Laura Ondrisova,Vaclav Seda,Krystof Hlavac,Petra Pavelkova,Eva Hoferkova,Giorgia Chiodin,Lenka Kostalova,Gabriela Mladonicka Pavlasova,Daniel Filip,Josef Vecera,Pedro Faria Zeni,Jan Oppelt,Zuzana Kahounova,Rachel Vichova,Karel Soucek,Anna Panovska,Karla Plevova,Sarka Pospisilova,Martin Simkovic,Filip Vrbacky,Daniel Lysak,Stacey M Fernandes,Matthew S Davids,Alba Maiques-Diaz,Stella Charalampopoulou,Jose I Martin-Subero,Jennifer R Brown,Michael Doubek,Francesco Forconi,Jiri Mayer,Marek Mraz
{"title":"FoxO1/Rictor axis induces a non-genetic adaptation to Ibrutinib via Akt activation in chronic lymphocytic leukemia.","authors":"Laura Ondrisova,Vaclav Seda,Krystof Hlavac,Petra Pavelkova,Eva Hoferkova,Giorgia Chiodin,Lenka Kostalova,Gabriela Mladonicka Pavlasova,Daniel Filip,Josef Vecera,Pedro Faria Zeni,Jan Oppelt,Zuzana Kahounova,Rachel Vichova,Karel Soucek,Anna Panovska,Karla Plevova,Sarka Pospisilova,Martin Simkovic,Filip Vrbacky,Daniel Lysak,Stacey M Fernandes,Matthew S Davids,Alba Maiques-Diaz,Stella Charalampopoulou,Jose I Martin-Subero,Jennifer R Brown,Michael Doubek,Francesco Forconi,Jiri Mayer,Marek Mraz","doi":"10.1172/jci173770","DOIUrl":null,"url":null,"abstract":"BTK inhibitor therapy induces peripheral blood lymphocytosis in chronic lymphocytic leukemia (CLL) lasting for several months. It remains unclear whether non-genetic adaptation mechanisms exist, allowing CLL cells' survival during BTK inhibitor-induced lymphocytosis and/or playing a role in therapy resistance. We show that in approximately 70 % of CLL cases, ibrutinib treatment in vivo increases Akt activity above pre-therapy levels within several weeks, leading to compensatory CLL cell survival and a more prominent lymphocytosis on therapy. Ibrutinib-induced Akt phosphorylation (pAktS473) is caused by the upregulation of FoxO1 transcription factor, which induces expression of Rictor, an assembly protein for mTORC2 protein complex that directly phosphorylates Akt at serine 473 (S473). Knock-out or inhibition of FoxO1 or Rictor led to a dramatic decrease in Akt phosphorylation and growth disadvantage for malignant B cells in the presence of ibrutinib (or PI3K inhibitor idelalisib) in vitro and in vivo. FoxO1/Rictor/pAktS473 axis represents an early non-genetic adaptation to BCR inhibitor therapy not requiring PI3Kδ or BTK kinase activity. We further demonstrate that FoxO1 can be targeted therapeutically, and its inhibition induces CLL cells' apoptosis alone or in combination with BTK inhibitors (ibrutinib, acalabrutinib, pirtobrutinib) and blocks their proliferation triggered by T-cell factors (CD40L, IL-4, and IL-21).","PeriodicalId":520097,"journal":{"name":"The Journal of Clinical Investigation","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1172/jci173770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
BTK inhibitor therapy induces peripheral blood lymphocytosis in chronic lymphocytic leukemia (CLL) lasting for several months. It remains unclear whether non-genetic adaptation mechanisms exist, allowing CLL cells' survival during BTK inhibitor-induced lymphocytosis and/or playing a role in therapy resistance. We show that in approximately 70 % of CLL cases, ibrutinib treatment in vivo increases Akt activity above pre-therapy levels within several weeks, leading to compensatory CLL cell survival and a more prominent lymphocytosis on therapy. Ibrutinib-induced Akt phosphorylation (pAktS473) is caused by the upregulation of FoxO1 transcription factor, which induces expression of Rictor, an assembly protein for mTORC2 protein complex that directly phosphorylates Akt at serine 473 (S473). Knock-out or inhibition of FoxO1 or Rictor led to a dramatic decrease in Akt phosphorylation and growth disadvantage for malignant B cells in the presence of ibrutinib (or PI3K inhibitor idelalisib) in vitro and in vivo. FoxO1/Rictor/pAktS473 axis represents an early non-genetic adaptation to BCR inhibitor therapy not requiring PI3Kδ or BTK kinase activity. We further demonstrate that FoxO1 can be targeted therapeutically, and its inhibition induces CLL cells' apoptosis alone or in combination with BTK inhibitors (ibrutinib, acalabrutinib, pirtobrutinib) and blocks their proliferation triggered by T-cell factors (CD40L, IL-4, and IL-21).