Encapsulated Void Resonators in Van der Waals Heterostructures

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2024-10-25 DOI:10.1002/lpor.202401215
Avishek Sarbajna, Dorte Rubæk Danielsen, Laura Nevenka Casses, Nicolas Stenger, Peter Bøggild, Søren Raza
{"title":"Encapsulated Void Resonators in Van der Waals Heterostructures","authors":"Avishek Sarbajna, Dorte Rubæk Danielsen, Laura Nevenka Casses, Nicolas Stenger, Peter Bøggild, Søren Raza","doi":"10.1002/lpor.202401215","DOIUrl":null,"url":null,"abstract":"Confining light in nanoscale air voids can enable new photonic applications by eliminating the requirement of low loss in traditional dielectric resonators. Van der Waals materials are uniquely suited for this purpose as they offer a tailored assembly of different materials and the ability to fully enclose air voids through transfer techniques. Here, highly lossy van der Waals materials are leveraged to demonstrate optical resonances that confine light in encapsulated air voids. Void resonances are theoretically designed in the visible spectrum and resonant modes supported by void arrays are identified. Experimentally, void arrays are fabricated in tungsten diselenide and the confined resonances are characterized using far‐field reflectance measurements and scanning near‐field optical microscopy. Using van der Waals heterostructure assembly, the voids are encapsulated with hexagonal boron nitride and tungsten diselenide, which substantially reduces the void volume causing a large spectral blue shift of the void resonance exceeding 150 nm. The work demonstrates a versatile optical platform for lossy materials, opening a new regime of material space for photonic devices.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401215","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Confining light in nanoscale air voids can enable new photonic applications by eliminating the requirement of low loss in traditional dielectric resonators. Van der Waals materials are uniquely suited for this purpose as they offer a tailored assembly of different materials and the ability to fully enclose air voids through transfer techniques. Here, highly lossy van der Waals materials are leveraged to demonstrate optical resonances that confine light in encapsulated air voids. Void resonances are theoretically designed in the visible spectrum and resonant modes supported by void arrays are identified. Experimentally, void arrays are fabricated in tungsten diselenide and the confined resonances are characterized using far‐field reflectance measurements and scanning near‐field optical microscopy. Using van der Waals heterostructure assembly, the voids are encapsulated with hexagonal boron nitride and tungsten diselenide, which substantially reduces the void volume causing a large spectral blue shift of the void resonance exceeding 150 nm. The work demonstrates a versatile optical platform for lossy materials, opening a new regime of material space for photonic devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
范德华异质结构中的封装空隙谐振器
将光封闭在纳米级空隙中,可以消除传统介质谐振器对低损耗的要求,从而实现新的光子应用。范德瓦耳斯材料非常适合这一目的,因为它们提供了不同材料的定制组合,并能通过转移技术完全封闭空隙。在此,我们利用高损耗范德瓦耳斯材料来展示将光限制在封装空隙中的光学共振。从理论上设计了可见光谱中的空隙共振,并确定了空隙阵列支持的共振模式。实验中,在二硒化钨中制造了空隙阵列,并使用远场反射测量和扫描近场光学显微镜对封闭共振进行了表征。利用范德华异质结构组装,空隙被六方氮化硼和二硒化钨封装,这大大减少了空隙体积,导致空隙共振的光谱蓝移超过 150 纳米。这项工作为有损材料展示了一个多功能光学平台,为光子器件开辟了新的材料空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Encapsulated Void Resonators in Van der Waals Heterostructures Focusing Through Scattering Media Via 1D Speckle Signal Feedback Ultralong Room Temperature Phosphorescence Emission From Gels Induced by Multiple Confinement Effects A Giant Optically Anisotropic Phosphate Driven by Mixed Valence Mercury Units Inverse-Designed Broadband Ultrathin Aperiodic Metacoatings Spanning from Deep Ultraviolet to Near Infrared
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1