Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal-Support Interaction and Dual Cl−-Repelling Layers

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-10-25 DOI:10.1002/adma.202408982
Dong Liu, Xiaotian Wei, Jianxi Lu, Xin Wang, Kai Liu, Yaohai Cai, Yingwei Qi, Lei Wang, Haoqiang Ai, Zhenbo Wang
{"title":"Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal-Support Interaction and Dual Cl−-Repelling Layers","authors":"Dong Liu, Xiaotian Wei, Jianxi Lu, Xin Wang, Kai Liu, Yaohai Cai, Yingwei Qi, Lei Wang, Haoqiang Ai, Zhenbo Wang","doi":"10.1002/adma.202408982","DOIUrl":null,"url":null,"abstract":"Direct seawater electrolysis is emerging as a promising renewable energy technology for large-scale hydrogen generation. The development of Os-Ni<sub>4</sub>Mo/MoO<sub>2</sub> micropillar arrays with strong metal-support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The micropillar structure enhances electron and mass transfer, extending catalytic reaction steps and improving seawater electrolysis efficiency. Theoretical and experimental studies demonstrate that the strong MSI between Os and Ni<sub>4</sub>Mo/MoO<sub>2</sub> optimizes the surface electronic structure of the catalyst, reducing the reaction barrier and thereby improving catalytic activity. Importantly, for the first time, a dual Cl<sup>−</sup> repelling layer is constructed by electrostatic force to safeguard active sites against Cl<sup>−</sup> attack during seawater oxidation. This includes a strong Os─Cl adsorption and an in situ-formed MoO<sub>4</sub><sup>2−</sup> layer. As a result, the Os-Ni<sub>4</sub>Mo/MoO<sub>2</sub> catalyst exhibits an ultralow overpotential of 113 and 336 mV to reach 500 mA cm<sup>−2</sup> for HER and OER in natural seawater from the South China Sea (without purification, with 1 <span>m</span> KOH added). Notably, it demonstrates superior stability, degrading only 0.37 µV h<sup>−1</sup> after 2500 h of seawater oxidation, significantly surpassing the technical target of 1.0 µV h<sup>−1</sup> set by the United States Department of Energy.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202408982","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct seawater electrolysis is emerging as a promising renewable energy technology for large-scale hydrogen generation. The development of Os-Ni4Mo/MoO2 micropillar arrays with strong metal-support interaction (MSI) as a bifunctional electrocatalyst for seawater electrolysis is reported. The micropillar structure enhances electron and mass transfer, extending catalytic reaction steps and improving seawater electrolysis efficiency. Theoretical and experimental studies demonstrate that the strong MSI between Os and Ni4Mo/MoO2 optimizes the surface electronic structure of the catalyst, reducing the reaction barrier and thereby improving catalytic activity. Importantly, for the first time, a dual Cl repelling layer is constructed by electrostatic force to safeguard active sites against Cl attack during seawater oxidation. This includes a strong Os─Cl adsorption and an in situ-formed MoO42− layer. As a result, the Os-Ni4Mo/MoO2 catalyst exhibits an ultralow overpotential of 113 and 336 mV to reach 500 mA cm−2 for HER and OER in natural seawater from the South China Sea (without purification, with 1 m KOH added). Notably, it demonstrates superior stability, degrading only 0.37 µV h−1 after 2500 h of seawater oxidation, significantly surpassing the technical target of 1.0 µV h−1 set by the United States Department of Energy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业电流密度下的高效超稳定海水电解,具有强金属支撑相互作用和双拒氯层
海水直接电解正在成为大规模制氢的一种前景广阔的可再生能源技术。本研究开发了具有强金属-支撑相互作用(MSI)的 Os-Ni4Mo/MoO2 微柱阵列,作为海水电解的双功能电催化剂。微柱结构增强了电子和质量传递,延长了催化反应步骤,提高了海水电解效率。理论和实验研究表明,Os 和 Ni4Mo/MoO2 之间的强 MSI 优化了催化剂的表面电子结构,降低了反应势垒,从而提高了催化活性。重要的是,在海水氧化过程中,该催化剂首次通过静电力构建了双Cl-排斥层,以保护活性位点免受Cl-的侵蚀。这包括一个强 Os─Cl 吸附层和一个原位形成的 MoO42- 层。因此,Os-Ni4Mo/MoO2 催化剂的过电位极低,分别为 113 mV 和 336 mV,在中国南海的天然海水中(未经净化,添加 1 m KOH),HER 和 OER 的过电位可达 500 mA cm-2。值得注意的是,它还表现出超强的稳定性,在海水氧化 2500 小时后仅衰减 0.37 µV h-1,大大超过了美国能源部设定的 1.0 µV h-1 的技术指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Efficient and Ultrastable Seawater Electrolysis at Industrial Current Density with Strong Metal-Support Interaction and Dual Cl−-Repelling Layers Iodide Management and Oriented Crystallization Modulation for High-Performance All-Air Processed Perovskite Solar Cells Masthead: (Adv. Mater. 43/2024) Mechanoresponsive Drug Release from a Flexible, Tissue-Adherent, Hybrid Hydrogel Actuator (Adv. Mater. 43/2024) A High-Voltage n-type Organic Cathode Materials Enabled by Tetraalkylammonium Complexing Agents for Aqueous Zinc-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1