Simulation of Autogenous Self‐Healing in Lime‐Based Mortars

IF 3.4 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL International Journal for Numerical and Analytical Methods in Geomechanics Pub Date : 2024-10-25 DOI:10.1002/nag.3870
Cristina De Nardi, Sina Sayadi, Iulia Mihai, Anthony Jefferson
{"title":"Simulation of Autogenous Self‐Healing in Lime‐Based Mortars","authors":"Cristina De Nardi, Sina Sayadi, Iulia Mihai, Anthony Jefferson","doi":"10.1002/nag.3870","DOIUrl":null,"url":null,"abstract":"Throughout history, architectural heritage has been constructed using masonry, clay or stone elements, and lime‐based mortars. Over time, old buildings are subjected to different degrees of movement and degradation, leading to the formation of microcracks. Water dissolves and transports lime in mortar, but when the water evaporates, the lime is deposited and heals cracks in a process known as autogenous healing. Lime‐based mortars can regain some mechanical properties due to their healing capacity, given certain conditions. In the present work, a constitutive formulation has been developed to simulate cracking and healing in lime‐based mortars. The proposed model captures the residual displacements within cracks, associated with interacting crack surface asperities, as well as the healing effect on mechanical properties. A new approach is described which expresses these mechanisms mathematically within a micromechanical formulation. The proposed model was validated by comparing the outputs with experimental data. The results show that the new continuum micromechanical damage‐healing model could capture the damage‐healing cycle with good accuracy.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"7 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3870","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Throughout history, architectural heritage has been constructed using masonry, clay or stone elements, and lime‐based mortars. Over time, old buildings are subjected to different degrees of movement and degradation, leading to the formation of microcracks. Water dissolves and transports lime in mortar, but when the water evaporates, the lime is deposited and heals cracks in a process known as autogenous healing. Lime‐based mortars can regain some mechanical properties due to their healing capacity, given certain conditions. In the present work, a constitutive formulation has been developed to simulate cracking and healing in lime‐based mortars. The proposed model captures the residual displacements within cracks, associated with interacting crack surface asperities, as well as the healing effect on mechanical properties. A new approach is described which expresses these mechanisms mathematically within a micromechanical formulation. The proposed model was validated by comparing the outputs with experimental data. The results show that the new continuum micromechanical damage‐healing model could capture the damage‐healing cycle with good accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石灰基砂浆的自生自愈模拟
纵观历史,建筑遗产都是用砖石、粘土或石材以及石灰砂浆建造而成的。随着时间的推移,古建筑会受到不同程度的移动和退化,从而形成微裂缝。水会溶解并带走灰浆中的石灰,但当水蒸发后,石灰会沉积并愈合裂缝,这一过程被称为自生愈合。在一定条件下,石灰基砂浆可因其愈合能力而恢复某些机械性能。在本研究中,我们开发了一种构成公式来模拟石灰基砂浆的开裂和愈合。所提出的模型捕捉到了裂缝内的残余位移、与相互作用的裂缝表面粗糙度相关的位移以及对机械性能的愈合效应。该模型采用了一种新方法,在微观力学公式中对这些机制进行了数学表达。通过将输出结果与实验数据进行比较,对所提出的模型进行了验证。结果表明,新的连续微机械损伤愈合模型能够准确捕捉损伤愈合周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
12.50%
发文量
160
审稿时长
9 months
期刊介绍: The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.
期刊最新文献
A POD‐TANN Approach for the Multiscale Modeling of Materials and Macro‐Element Derivation in Geomechanics Adaptive Mesh Generation and Numerical Verification for Complex Rock Structures Based on Optimization and Iteration Algorithms Issue Information Analysis of Fracturing Above Block Caving Back: A Spherical Shell Theory Approach and BEM Numerical Simulation Data‐Driven Tools to Evaluate Support Pressure, Radial Displacements, and Face Extrusion for Tunnels Excavated in Elastoplastic Grounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1