{"title":"Structural Fluctuation in Homodimeric Aminoacyl-tRNA Synthetases Induces Half-of-the-Sites Activity.","authors":"Yoshino Okamoto, Takunori Yasuda, Rikuri Morita, Yasuteru Shigeta, Ryuhei Harada","doi":"10.1021/acs.jpcb.4c05191","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymatic activity is regulated by various mechanisms to ensure biologically proper functions. Notable instances of such regulation in homodimeric enzymes include \"all-of-the-sites activity\" and \"half-of-the-sites activity\". The difference in these activities lies in whether one or both of the subunits are simultaneously active. Owing to its uniqueness, the mechanism of half-of-the-sites activity has been widely investigated. Consequently, structural asymmetry derived from cooperative motion is considered to induce half-of-the-sites activity. In contrast, recent investigations have suggested that subunit-intrinsic properties or structural fluctuation also induces structural asymmetry. Hence, the mechanism underlying half-of-the-sites activity has not been completely elucidated. Additionally, most previous studies have focused only on half-of-the-sites activity. Therefore, by comparing the structural and dynamical properties of two representative homodimers exhibiting all-of-the-sites and half-of-the-sites activities, respectively, we attempted to elucidate the mechanism of half-of-the-sites activity. Specifically, all-atom molecular dynamics simulations were applied to lysyl-tRNA synthetase and tyrosyl-tRNA synthetase. Our analysis revealed that structural fluctuation is sufficient to induce structural asymmetry in addition to the well-established factor of cooperative motion. Considering that structural fluctuation is a common characteristic of any enzyme, it could be a general factor in half-of-the-sites activity.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"10823-10830"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551958/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c05191","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Enzymatic activity is regulated by various mechanisms to ensure biologically proper functions. Notable instances of such regulation in homodimeric enzymes include "all-of-the-sites activity" and "half-of-the-sites activity". The difference in these activities lies in whether one or both of the subunits are simultaneously active. Owing to its uniqueness, the mechanism of half-of-the-sites activity has been widely investigated. Consequently, structural asymmetry derived from cooperative motion is considered to induce half-of-the-sites activity. In contrast, recent investigations have suggested that subunit-intrinsic properties or structural fluctuation also induces structural asymmetry. Hence, the mechanism underlying half-of-the-sites activity has not been completely elucidated. Additionally, most previous studies have focused only on half-of-the-sites activity. Therefore, by comparing the structural and dynamical properties of two representative homodimers exhibiting all-of-the-sites and half-of-the-sites activities, respectively, we attempted to elucidate the mechanism of half-of-the-sites activity. Specifically, all-atom molecular dynamics simulations were applied to lysyl-tRNA synthetase and tyrosyl-tRNA synthetase. Our analysis revealed that structural fluctuation is sufficient to induce structural asymmetry in addition to the well-established factor of cooperative motion. Considering that structural fluctuation is a common characteristic of any enzyme, it could be a general factor in half-of-the-sites activity.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.