{"title":"Differential production of mitochondrial reactive oxygen species between mouse (Mus musculus) and crucian carp (Carassius carassius)","authors":"Lucie Gerber, May-Kristin Torp, Göran E. Nilsson, Sjannie Lefevre, Kåre-Olav Stensløkken","doi":"10.1111/apha.14244","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>In most vertebrates, oxygen deprivation and subsequent re-oxygenation are associated with mitochondrial impairment and excess production of reactive oxygen species (ROS) like hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). This in turn triggers a cascade of cell-damaging events in a temperature-dependent manner. The crucian carp (<i>Carassius carassius</i>) is one of few vertebrates that survives months without oxygen at cold temperatures and overcomes oxidative damage during re-oxygenation periods. Mitochondria of this anoxia-tolerant species therefore serve as an excellent model in translational research to study adaptation and resilience to low oxygen conditions and thermal variability.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Here, we used high-resolution respirometry on isolated mitochondria from hearts of crucian carp and the anoxia-intolerant mouse (<i>Mus musculus</i>), at 37 and 8°C; two temperatures relevant for transplantation medicine (i.e., graft preservation and subsequent rewarming).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We find: (1) a striking difference in H<sub>2</sub>O<sub>2</sub> release between the two species at 37°C despite comparable mitochondrial efficiency and capacity, (2) a massive H<sub>2</sub>O<sub>2</sub> release after inhibition of complex V in mouse at 37°C that is absent in crucian carp, and prevented in mouse by incubation at 8°C or uncoupling with a protonophore at 37°C, and (3) indications that differences in mitochondrial complex I and II capacity and thermal sensitivity influence the release of mitochondrial H<sub>2</sub>O<sub>2</sub> relative to respiration.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our findings provide comparative insights into a spectrum of mitochondrial adaptations in vertebrates and the importance of thermal variability. Furthermore, the species- and temperature-related changes associated with mitochondria highlighted in this study may help identify mitochondria-based targets for translational medicine.</p>\n </section>\n </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"240 12","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/apha.14244","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.14244","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
In most vertebrates, oxygen deprivation and subsequent re-oxygenation are associated with mitochondrial impairment and excess production of reactive oxygen species (ROS) like hydrogen peroxide (H2O2). This in turn triggers a cascade of cell-damaging events in a temperature-dependent manner. The crucian carp (Carassius carassius) is one of few vertebrates that survives months without oxygen at cold temperatures and overcomes oxidative damage during re-oxygenation periods. Mitochondria of this anoxia-tolerant species therefore serve as an excellent model in translational research to study adaptation and resilience to low oxygen conditions and thermal variability.
Methods
Here, we used high-resolution respirometry on isolated mitochondria from hearts of crucian carp and the anoxia-intolerant mouse (Mus musculus), at 37 and 8°C; two temperatures relevant for transplantation medicine (i.e., graft preservation and subsequent rewarming).
Results
We find: (1) a striking difference in H2O2 release between the two species at 37°C despite comparable mitochondrial efficiency and capacity, (2) a massive H2O2 release after inhibition of complex V in mouse at 37°C that is absent in crucian carp, and prevented in mouse by incubation at 8°C or uncoupling with a protonophore at 37°C, and (3) indications that differences in mitochondrial complex I and II capacity and thermal sensitivity influence the release of mitochondrial H2O2 relative to respiration.
Conclusion
Our findings provide comparative insights into a spectrum of mitochondrial adaptations in vertebrates and the importance of thermal variability. Furthermore, the species- and temperature-related changes associated with mitochondria highlighted in this study may help identify mitochondria-based targets for translational medicine.
期刊介绍:
Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.