Haoran Zhang , Daoyuan Yang , Jie Gao , Kai Qian , Hua Zhu , Yan Song , Haixia Sui , Weidong Hao
{"title":"Probabilistic health risk assessment of primary aromatic amines in polyamide cooking utensils in China by Monte Carlo simulation","authors":"Haoran Zhang , Daoyuan Yang , Jie Gao , Kai Qian , Hua Zhu , Yan Song , Haixia Sui , Weidong Hao","doi":"10.1016/j.fct.2024.115067","DOIUrl":null,"url":null,"abstract":"<div><div>The migration of primary aromatic amines (PAAs) from food contact materials raises significant public health concerns. In this study, the migration levels of 26 PAAs were analyzed in 242 nylon cooking utensils using ultra-performance liquid chromatography-tandem mass spectrometry. A total of 18 PAAs were detected, of which 14 were quantified, with 4,4′-diaminodiphenylmethane (4,4′-MDA) and aniline being the most prevalent ones. The compliance rates for nylon kitchenware were similar under both legislation of European Commission (76.9%) and Chinese legislation (77.9%). Probabilistic non-carcinogenic and carcinogenic risk assessment were conducted using Monte Carlo simulation, with read-across approach applied to fill the gap of toxicity data. The hazard quotients for 18 PAAs were calculated, revealing that 17 PAAs (excluding 4,4′-MDA) had acceptable hazard quotients (<1). Lifetime cancer risks for 17 PAAs were determined, with 15 PAAs (excluding benzidine and 4,4′-MDA) showing acceptable cancer risks (<10<sup>−4</sup>). The study suggests that the non-carcinogenic and carcinogenic health risks posed by PAAs migrating from FCMs can be effectively mitigated by promptly identifying non-compliant products and reducing exposure to high-risk PAAs such as 4,4′-MDA and benzidine. Enhancing the understanding of PAA hazard characterization and implementing measures to minimize health risks associated with PAA migration from FCMs is hence recommended.</div></div>","PeriodicalId":317,"journal":{"name":"Food and Chemical Toxicology","volume":"193 ","pages":"Article 115067"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Chemical Toxicology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278691524006331","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The migration of primary aromatic amines (PAAs) from food contact materials raises significant public health concerns. In this study, the migration levels of 26 PAAs were analyzed in 242 nylon cooking utensils using ultra-performance liquid chromatography-tandem mass spectrometry. A total of 18 PAAs were detected, of which 14 were quantified, with 4,4′-diaminodiphenylmethane (4,4′-MDA) and aniline being the most prevalent ones. The compliance rates for nylon kitchenware were similar under both legislation of European Commission (76.9%) and Chinese legislation (77.9%). Probabilistic non-carcinogenic and carcinogenic risk assessment were conducted using Monte Carlo simulation, with read-across approach applied to fill the gap of toxicity data. The hazard quotients for 18 PAAs were calculated, revealing that 17 PAAs (excluding 4,4′-MDA) had acceptable hazard quotients (<1). Lifetime cancer risks for 17 PAAs were determined, with 15 PAAs (excluding benzidine and 4,4′-MDA) showing acceptable cancer risks (<10−4). The study suggests that the non-carcinogenic and carcinogenic health risks posed by PAAs migrating from FCMs can be effectively mitigated by promptly identifying non-compliant products and reducing exposure to high-risk PAAs such as 4,4′-MDA and benzidine. Enhancing the understanding of PAA hazard characterization and implementing measures to minimize health risks associated with PAA migration from FCMs is hence recommended.
期刊介绍:
Food and Chemical Toxicology (FCT), an internationally renowned journal, that publishes original research articles and reviews on toxic effects, in animals and humans, of natural or synthetic chemicals occurring in the human environment with particular emphasis on food, drugs, and chemicals, including agricultural and industrial safety, and consumer product safety. Areas such as safety evaluation of novel foods and ingredients, biotechnologically-derived products, and nanomaterials are included in the scope of the journal. FCT also encourages submission of papers on inter-relationships between nutrition and toxicology and on in vitro techniques, particularly those fostering the 3 Rs.
The principal aim of the journal is to publish high impact, scholarly work and to serve as a multidisciplinary forum for research in toxicology. Papers submitted will be judged on the basis of scientific originality and contribution to the field, quality and subject matter. Studies should address at least one of the following:
-Adverse physiological/biochemical, or pathological changes induced by specific defined substances
-New techniques for assessing potential toxicity, including molecular biology
-Mechanisms underlying toxic phenomena
-Toxicological examinations of specific chemicals or consumer products, both those showing adverse effects and those demonstrating safety, that meet current standards of scientific acceptability.
Authors must clearly and briefly identify what novel toxic effect (s) or toxic mechanism (s) of the chemical are being reported and what their significance is in the abstract. Furthermore, sufficient doses should be included in order to provide information on NOAEL/LOAEL values.