Biyu Zhang , Ida Ådnebergli , Georgios D. Stefanidis , Tom Van Gerven
{"title":"Effects of Ultrasound on Reactive Crystallization and Particle Properties of an Aromatic Amine in Batch and Continuous modes","authors":"Biyu Zhang , Ida Ådnebergli , Georgios D. Stefanidis , Tom Van Gerven","doi":"10.1016/j.ultsonch.2024.107121","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrasound has shown its benefits in the manufacturing processes of many pharmaceuticals and fine chemicals. This study focused on the reactive crystallization system of an aromatic amine and explored the potential uses of ultrasound in both batch and continuous modes. In batch experiments, we studied the effects of different sonication conditions including power, duration, and starting point on final particle properties. Under ultrasound, the crystal form and crystal morphology remained well maintained. The results of particle size and size distribution suggested that ultrasound reduced the mean sizes by improving the nucleation process and breaking up large particles. Additionally, the presence of ultrasound in continuous experiments was capable of inducing nucleation and the crystal products collected had a suitable distribution. Integrating ultrasound into the beginning of the continuous crystallization process can be an alternative to the seeding technique. The increasing sonication power did not reduce the induction time substantially. This indicated that a rational sonication condition should balance the overall process efficiency and energy consumption. The findings from batch and continuous experiments indicate that ultrasound could intensify industrial crystallization of the aromatic amine. Incorporating energy-efficient ultrasound with the continuous process will potentially lead to increased production efficiency and a well-controlled product quality.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"111 ","pages":"Article 107121"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724003699","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound has shown its benefits in the manufacturing processes of many pharmaceuticals and fine chemicals. This study focused on the reactive crystallization system of an aromatic amine and explored the potential uses of ultrasound in both batch and continuous modes. In batch experiments, we studied the effects of different sonication conditions including power, duration, and starting point on final particle properties. Under ultrasound, the crystal form and crystal morphology remained well maintained. The results of particle size and size distribution suggested that ultrasound reduced the mean sizes by improving the nucleation process and breaking up large particles. Additionally, the presence of ultrasound in continuous experiments was capable of inducing nucleation and the crystal products collected had a suitable distribution. Integrating ultrasound into the beginning of the continuous crystallization process can be an alternative to the seeding technique. The increasing sonication power did not reduce the induction time substantially. This indicated that a rational sonication condition should balance the overall process efficiency and energy consumption. The findings from batch and continuous experiments indicate that ultrasound could intensify industrial crystallization of the aromatic amine. Incorporating energy-efficient ultrasound with the continuous process will potentially lead to increased production efficiency and a well-controlled product quality.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.