{"title":"Optimal control analysis on the spread of COVID-19: Impact of contact transmission and environmental contamination.","authors":"Sunil Singh Negi, Ravina, Nitin Sharma, Anupam Priyadarshi","doi":"10.1016/j.gene.2024.149033","DOIUrl":null,"url":null,"abstract":"<p><p>The study investigates the intricate dynamics of SARS-CoV-2 transmission, with a particular focus on both close-contact interactions and environmental factors. Using advanced mathematical modeling and epidemiological analysis, explored the effects of these transmission pathways on the spread of COVID-19. The equilibrium points for both the disease-free and endemic states calculated and evaluated their global stability. Additionally, the basic reproduction number (R<sub>0</sub>) is derived to quantify the transmission potential of the virus. To ensure model accuracy, numerical simulations are performed using MATLAB, utilizing daily COVID-19 case data from India. Parameter values are sourced from existing literature, with certain parameters estimated through fitting the model to observed data. Crucially, the model incorporates environmental transmission factors, such as surface contamination and airborne spread. The inclusion of these factors provides a more comprehensive understanding of the virus's spread, demonstrating the importance of interventions like use of face masks, environmental sanitization, vaccine efficacy, availability of treatment resources underappreciated when focusing solely on direct human contact. A sensitivity analysis is conducted to assess the impact of different parameters on R<sub>0</sub>, with results visualized through heat maps to identify the most influential factors. Furthermore, Pontryagin's maximum principle is employed to develop an optimal control model, enabling the formulation of effective intervention strategies. By analysing both interpersonal and environmental transmission mechanisms, this study offers a more holistic framework for understanding SARS-CoV-2 transmission. The insights gained are critical for informing public health strategies, emphasizing the necessity of addressing both direct contact and environmental sources of infection to more effectively manage current and future outbreaks.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2024.149033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The study investigates the intricate dynamics of SARS-CoV-2 transmission, with a particular focus on both close-contact interactions and environmental factors. Using advanced mathematical modeling and epidemiological analysis, explored the effects of these transmission pathways on the spread of COVID-19. The equilibrium points for both the disease-free and endemic states calculated and evaluated their global stability. Additionally, the basic reproduction number (R0) is derived to quantify the transmission potential of the virus. To ensure model accuracy, numerical simulations are performed using MATLAB, utilizing daily COVID-19 case data from India. Parameter values are sourced from existing literature, with certain parameters estimated through fitting the model to observed data. Crucially, the model incorporates environmental transmission factors, such as surface contamination and airborne spread. The inclusion of these factors provides a more comprehensive understanding of the virus's spread, demonstrating the importance of interventions like use of face masks, environmental sanitization, vaccine efficacy, availability of treatment resources underappreciated when focusing solely on direct human contact. A sensitivity analysis is conducted to assess the impact of different parameters on R0, with results visualized through heat maps to identify the most influential factors. Furthermore, Pontryagin's maximum principle is employed to develop an optimal control model, enabling the formulation of effective intervention strategies. By analysing both interpersonal and environmental transmission mechanisms, this study offers a more holistic framework for understanding SARS-CoV-2 transmission. The insights gained are critical for informing public health strategies, emphasizing the necessity of addressing both direct contact and environmental sources of infection to more effectively manage current and future outbreaks.