Aiste Skog, Razmik A Hovhannisyan, Vladimir M Krasnov
{"title":"Numerical Modeling of Vortex-Based Superconducting Memory Cells: Dynamics and Geometrical Optimization.","authors":"Aiste Skog, Razmik A Hovhannisyan, Vladimir M Krasnov","doi":"10.3390/nano14201634","DOIUrl":null,"url":null,"abstract":"<p><p>The lack of dense random-access memory is one of the main obstacles to the development of digital superconducting computers. It has been suggested that AVRAM cells, based on the storage of a single Abrikosov vortex-the smallest quantized object in superconductors-can enable drastic miniaturization to the nanometer scale. In this work, we present the numerical modeling of such cells using time-dependent Ginzburg-Landau equations. The cell represents a fluxonic quantum dot containing a small superconducting island, an asymmetric notch for the vortex entrance, a guiding track, and a vortex trap. We determine the optimal geometrical parameters for operation at zero magnetic field and the conditions for controllable vortex manipulation by short current pulses. We report ultrafast vortex motion with velocities more than an order of magnitude faster than those expected for macroscopic superconductors. This phenomenon is attributed to strong interactions with the edges of a mesoscopic island, combined with the nonlinear reduction of flux-flow viscosity due to the nonequilibrium effects in the track. Our results show that such cells can be scaled down to sizes comparable to the London penetration depth, ∼100 nm, and can enable ultrafast switching on the picosecond scale with ultralow energy per operation, ∼10-19 J.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510040/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201634","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The lack of dense random-access memory is one of the main obstacles to the development of digital superconducting computers. It has been suggested that AVRAM cells, based on the storage of a single Abrikosov vortex-the smallest quantized object in superconductors-can enable drastic miniaturization to the nanometer scale. In this work, we present the numerical modeling of such cells using time-dependent Ginzburg-Landau equations. The cell represents a fluxonic quantum dot containing a small superconducting island, an asymmetric notch for the vortex entrance, a guiding track, and a vortex trap. We determine the optimal geometrical parameters for operation at zero magnetic field and the conditions for controllable vortex manipulation by short current pulses. We report ultrafast vortex motion with velocities more than an order of magnitude faster than those expected for macroscopic superconductors. This phenomenon is attributed to strong interactions with the edges of a mesoscopic island, combined with the nonlinear reduction of flux-flow viscosity due to the nonequilibrium effects in the track. Our results show that such cells can be scaled down to sizes comparable to the London penetration depth, ∼100 nm, and can enable ultrafast switching on the picosecond scale with ultralow energy per operation, ∼10-19 J.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.