Skull evolution and lineage diversification in endemic Malagasy carnivorans.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Royal Society Open Science Pub Date : 2024-10-23 eCollection Date: 2024-10-01 DOI:10.1098/rsos.240538
Chris J Law, Tate J Linden, John J Flynn
{"title":"Skull evolution and lineage diversification in endemic Malagasy carnivorans.","authors":"Chris J Law, Tate J Linden, John J Flynn","doi":"10.1098/rsos.240538","DOIUrl":null,"url":null,"abstract":"<p><p>Madagascar is one of the world's foremost biodiversity hotspots with more than 90% of its species endemic to the island. Malagasy carnivorans are one of only four extant terrestrial mammalian clades endemic to Madagascar. Although there are only eight extant species, these carnivorans exhibit remarkable phenotypic and ecological diversity that is often hypothesized to have diversified through an adaptive radiation. Here, we investigated the evolution of skull diversity in Malagasy carnivorans and tested if they exhibited characteristics of convergence and an adaptive radiation. We found that their skull disparity exceeds that of any other feliform family, as their skulls vary widely and strikingly capture a large amount of the morphological variation found across all feliforms. We also found evidence of shared adaptive zones in cranial shape between euplerid subclades and felids, herpestids and viverrids. Lastly, contrary to predictions of adaptive radiation, we found that Malagasy carnivorans do not exhibit rapid lineage diversification and only marginally faster rates of mandibular shape evolution and to a lesser extent cranial shape evolution, compared to other feliforms. These results reveal that exceptional diversification rates are not necessary to generate the striking phenotypic diversity that evolved in carnivorans after their dispersal to and isolation on Madagascar.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 10","pages":"240538"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.240538","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Madagascar is one of the world's foremost biodiversity hotspots with more than 90% of its species endemic to the island. Malagasy carnivorans are one of only four extant terrestrial mammalian clades endemic to Madagascar. Although there are only eight extant species, these carnivorans exhibit remarkable phenotypic and ecological diversity that is often hypothesized to have diversified through an adaptive radiation. Here, we investigated the evolution of skull diversity in Malagasy carnivorans and tested if they exhibited characteristics of convergence and an adaptive radiation. We found that their skull disparity exceeds that of any other feliform family, as their skulls vary widely and strikingly capture a large amount of the morphological variation found across all feliforms. We also found evidence of shared adaptive zones in cranial shape between euplerid subclades and felids, herpestids and viverrids. Lastly, contrary to predictions of adaptive radiation, we found that Malagasy carnivorans do not exhibit rapid lineage diversification and only marginally faster rates of mandibular shape evolution and to a lesser extent cranial shape evolution, compared to other feliforms. These results reveal that exceptional diversification rates are not necessary to generate the striking phenotypic diversity that evolved in carnivorans after their dispersal to and isolation on Madagascar.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
马达加斯加特有食肉动物的头骨进化和品系多样化。
马达加斯加是世界上最重要的生物多样性热点地区之一,90% 以上的物种都是岛上特有的。马达加斯加食肉动物是马达加斯加仅有的四个现存陆生哺乳动物支系之一。虽然仅有八个现存物种,但这些食肉动物却表现出显著的表型和生态多样性,通常被认为是通过适应性辐射实现了多样化。在这里,我们研究了马达加斯加食肉动物头骨多样性的进化,并检验了它们是否表现出趋同和适应性辐射的特征。我们发现它们的头骨差异超过了任何其他猫科动物,因为它们的头骨差异很大,而且惊人地捕捉到了所有猫科动物的大量形态变异。此外,我们还发现了戟形目亚支系与鼬形目类、戟形目类和狸形目类在头骨形状上共享适应区的证据。最后,与适应性辐射的预测相反,我们发现马达加斯加食肉动物并没有表现出快速的品系分化,与其他猫科动物相比,它们的下颌形状进化速度稍快,头颅形状进化速度稍慢。这些结果表明,食肉目动物在迁移到马达加斯加并与世隔绝之后,其惊人的表型多样性并不必然产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
期刊最新文献
Data-driven Huntington's disease progression modelling and estimation of societal cost in the UK. How the pandemic affected psychological research. Molecular, spectroscopic and thermochemical characterization of C2Cl3, C2F3 and C2Br3 radicals and related species. Numerical simulation study on the force of overwintering foundation support structure of unsaturated seasonal permafrost under indoor experiments. Synthesis and biological evaluation of diclofenac acid derivatives as potential lipoxygenase and α-glucosidase inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1