Natural alleles of LEAFY and WAPO1 interact to regulate spikelet number per spike in wheat.

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2024-10-24 DOI:10.1007/s00122-024-04759-x
Junli Zhang, Germán F Burguener, Francine Paraiso, Jorge Dubcovsky
{"title":"Natural alleles of LEAFY and WAPO1 interact to regulate spikelet number per spike in wheat.","authors":"Junli Zhang, Germán F Burguener, Francine Paraiso, Jorge Dubcovsky","doi":"10.1007/s00122-024-04759-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Specific combinations of LFY and WAPO1 natural alleles maximize spikelet number per spike in wheat. Spikelet number per spike (SNS) is an important yield component in wheat that determines the maximum number of grains that can be formed in a wheat spike. In wheat, loss-of-function mutations in LEAFY (LFY) or its interacting protein WHEAT ORTHOLOG OF APO1 (WAPO1) significantly reduce SNS by reducing the rate of formation of spikelet meristems. In previous studies, we identified a natural amino acid change in WAPO1 (C47F) that significantly increases SNS in hexaploid wheat. In this study, we searched for natural variants in LFY that were associated with differences in SNS and detected significant effects in the LFY-B region in a nested association mapping population. We generated a large mapping population and confirmed that the LFY-B polymorphism R80S is linked with the differences in SNS, suggesting that LFY-B is the likely causal gene. A haplotype analysis revealed two amino acid changes P34L and R80S, which were both enriched during wheat domestication and breeding suggesting positive selection. We also explored the interactions between the LFY and WAPO1 natural variants for SNS using biparental populations and identified significant interaction, in which the positive effect of the 80S and 34L alleles from LFY-B was only detected in the WAPO-A1 47F background but not in the 47C background. Based on these results, we propose that the allele combination WAPO-A1-47F/LFY-B 34L 80S can be used in wheat breeding programs to maximize SNS and increase grain yield potential in wheat.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04759-x","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Specific combinations of LFY and WAPO1 natural alleles maximize spikelet number per spike in wheat. Spikelet number per spike (SNS) is an important yield component in wheat that determines the maximum number of grains that can be formed in a wheat spike. In wheat, loss-of-function mutations in LEAFY (LFY) or its interacting protein WHEAT ORTHOLOG OF APO1 (WAPO1) significantly reduce SNS by reducing the rate of formation of spikelet meristems. In previous studies, we identified a natural amino acid change in WAPO1 (C47F) that significantly increases SNS in hexaploid wheat. In this study, we searched for natural variants in LFY that were associated with differences in SNS and detected significant effects in the LFY-B region in a nested association mapping population. We generated a large mapping population and confirmed that the LFY-B polymorphism R80S is linked with the differences in SNS, suggesting that LFY-B is the likely causal gene. A haplotype analysis revealed two amino acid changes P34L and R80S, which were both enriched during wheat domestication and breeding suggesting positive selection. We also explored the interactions between the LFY and WAPO1 natural variants for SNS using biparental populations and identified significant interaction, in which the positive effect of the 80S and 34L alleles from LFY-B was only detected in the WAPO-A1 47F background but not in the 47C background. Based on these results, we propose that the allele combination WAPO-A1-47F/LFY-B 34L 80S can be used in wheat breeding programs to maximize SNS and increase grain yield potential in wheat.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LEAFY 和 WAPO1 的天然等位基因相互作用,调节小麦每穗的小穗数。
关键信息:LFY 和 WAPO1 天然等位基因的特定组合可使小麦每穗小穗数最大化。每穗小穗数(SNS)是小麦的一个重要产量成分,它决定了小麦穗中可形成的最大籽粒数。在小麦中,LEAFY(LFY)或其相互作用蛋白 WHEAT ORTHOLOG OF APO1(WAPO1)的功能缺失突变会降低小穗分生组织的形成速度,从而显著降低每穗小穗数(SNS)。在以前的研究中,我们发现 WAPO1 中的一个天然氨基酸变化(C47F)可显著提高六倍体小麦的自交系。在本研究中,我们寻找了 LFY 中与 SNS 差异相关的天然变异,并在嵌套关联作图群体中检测到 LFY-B 区域的显著影响。我们生成了一个大的作图群体,并证实 LFY-B 多态性 R80S 与 SNS 差异有关,表明 LFY-B 可能是致病基因。单倍型分析揭示了 P34L 和 R80S 这两个氨基酸变化,它们在小麦驯化和育种过程中都发生了富集,表明存在正选择。我们还利用双亲群体探讨了 LFY 和 WAPO1 自然变异之间对 SNS 的交互作用,发现了显著的交互作用,其中 LFY-B 的 80S 和 34L 等位基因的正效应只在 WAPO-A1 47F 背景中被检测到,而在 47C 背景中则未被检测到。基于这些结果,我们建议在小麦育种计划中使用WAPO-A1-47F/LFY-B 34L 80S等位基因组合,以最大限度地提高小麦的SNS和谷粒产量潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
Leveraging genomic prediction to surpass current yield gains in spring barley. Fine mapping of QGPC.caas-7AL for grain protein content in bread wheat. Genetic loci associated with sorghum drought tolerance in multiple environments and their sensitivity to environmental covariables. Correction to: Identification and development of functional markers for purple grain genes in durum wheat (Triticum durum Desf.). Correction to: Identification and map‑based cloning of an EMS‑induced mutation in wheat gene TaSP1 related to spike architecture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1