Optimization of sparse phenotyping strategy in multi-environmental trials in maize.

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2025-02-28 DOI:10.1007/s00122-025-04825-y
S R Mothukuri, Y Beyene, M Gültas, J Burgueño, S Griebel
{"title":"Optimization of sparse phenotyping strategy in multi-environmental trials in maize.","authors":"S R Mothukuri, Y Beyene, M Gültas, J Burgueño, S Griebel","doi":"10.1007/s00122-025-04825-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>The relatedness between the genotypes of the training and the testing set using sparse phenotyping experiments helps optimize the line allocation by utilizing the relationship measurements to reduce cost without compromising the genetic gain. The phenotyping needs to be optimized and aims to achieve desired precision at low costs because selection decisions are mainly based on multi-environmental trials. Optimization of sparse phenotyping is possible in plant breeding by applying relationship measurements and genomic prediction. Our research utilized genomic data and relationship measurements between the training (full testing genotypes) and testing sets (sparse testing genotypes) to optimize the allocation of genotypes to subsets in sparse testing. Different sparse phenotyping designs were mimicked based on the percentage (%) of lines in the full set, the number of partially tested lines, the number of tested environments, and balanced and unbalanced methods for allocating the lines among the environments. The eight relationship measurements were utilized to calculate the relatedness between full and sparse set genotypes. The results demonstrate that balanced and allocating 50% of lines to the full set designs have shown a higher Pearson correlation in terms of accuracy measurements than assigning the 30% of lines to the full set and balanced sparse methods. By reducing untested environments per sparse set, results enhance the accuracy of measurements. The relationship measurements exhibit a low significant Pearson correlation ranging from 0.20 to 0.31 using the accuracy measurements in sparse phenotyping experiments. The positive Pearson correlation shows that the maximization of the accuracy measurements can be helpful to the optimization of the line allocation on sparse phenotyping designs.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 3","pages":"62"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04825-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: The relatedness between the genotypes of the training and the testing set using sparse phenotyping experiments helps optimize the line allocation by utilizing the relationship measurements to reduce cost without compromising the genetic gain. The phenotyping needs to be optimized and aims to achieve desired precision at low costs because selection decisions are mainly based on multi-environmental trials. Optimization of sparse phenotyping is possible in plant breeding by applying relationship measurements and genomic prediction. Our research utilized genomic data and relationship measurements between the training (full testing genotypes) and testing sets (sparse testing genotypes) to optimize the allocation of genotypes to subsets in sparse testing. Different sparse phenotyping designs were mimicked based on the percentage (%) of lines in the full set, the number of partially tested lines, the number of tested environments, and balanced and unbalanced methods for allocating the lines among the environments. The eight relationship measurements were utilized to calculate the relatedness between full and sparse set genotypes. The results demonstrate that balanced and allocating 50% of lines to the full set designs have shown a higher Pearson correlation in terms of accuracy measurements than assigning the 30% of lines to the full set and balanced sparse methods. By reducing untested environments per sparse set, results enhance the accuracy of measurements. The relationship measurements exhibit a low significant Pearson correlation ranging from 0.20 to 0.31 using the accuracy measurements in sparse phenotyping experiments. The positive Pearson correlation shows that the maximization of the accuracy measurements can be helpful to the optimization of the line allocation on sparse phenotyping designs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
Fine mapping of the unique Ur-11 gene conferring broad resistance to the rust pathogen of common bean. Fine mapping of stripe rust resistance gene YrAn1589 in common wheat using Wheat660K SNP array and BSR-Seq. Optimization of sparse phenotyping strategy in multi-environmental trials in maize. The knockout of Gγ subunit HvGS3 by CRISPR/Cas9 gene editing improves the lodging resistance of barley through dwarfing and stem strengthening. Characterization of a stable QTL for quality-related traits and its effects on yields in wheat (Triticum aestivum L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1