History and Toxinology of Palytoxins.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-26 DOI:10.3390/toxins16100417
Harriet L Hammond, Chad J Roy
{"title":"History and Toxinology of Palytoxins.","authors":"Harriet L Hammond, Chad J Roy","doi":"10.3390/toxins16100417","DOIUrl":null,"url":null,"abstract":"<p><p>Palytoxins are a group of highly potent and structurally complex marine toxins that rank among some of the most toxic substances known to science. Palytoxins are naturally synthesized by a variety of marine organisms, including <i>Palythoa</i> zoanthids, <i>Ostreopsis</i> dinoflagellates, and <i>Trichodesmium</i> cyanobacteria, and are widely distributed in tropical and temperate regions where they can bioaccumulate in marine life. The evolution of research on palytoxins has been an intricate exchange between interdisciplinary fields, drawing insights from chemistry, biology, medicine, and environmental science in efforts to better understand and mitigate the health risks associated with this family of toxins. In this review, we begin with a brief history covering the discovery of this group of toxins and the events that led to its isolation. We then focus on the chemical structure of these compounds and their proposed mechanism of action. Finally, we review in vitro, ex vivo, and in vivo studies related to their toxicity, with the aim to provide a broad overview of the current knowledge on palytoxin toxinology.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins16100417","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Palytoxins are a group of highly potent and structurally complex marine toxins that rank among some of the most toxic substances known to science. Palytoxins are naturally synthesized by a variety of marine organisms, including Palythoa zoanthids, Ostreopsis dinoflagellates, and Trichodesmium cyanobacteria, and are widely distributed in tropical and temperate regions where they can bioaccumulate in marine life. The evolution of research on palytoxins has been an intricate exchange between interdisciplinary fields, drawing insights from chemistry, biology, medicine, and environmental science in efforts to better understand and mitigate the health risks associated with this family of toxins. In this review, we begin with a brief history covering the discovery of this group of toxins and the events that led to its isolation. We then focus on the chemical structure of these compounds and their proposed mechanism of action. Finally, we review in vitro, ex vivo, and in vivo studies related to their toxicity, with the aim to provide a broad overview of the current knowledge on palytoxin toxinology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
麻痹毒素的历史和毒理学。
萼片毒素是一组毒性极强、结构复杂的海洋毒素,是科学界已知的毒性最强的物质之一。藻类毒素是由多种海洋生物自然合成的,其中包括海藻、甲藻和蓝藻,广泛分布于热带和温带地区,可在海洋生物体内进行生物累积。关于浮游微藻毒素研究的发展是跨学科领域之间错综复杂的交流,我们从化学、生物学、医学和环境科学中汲取灵感,努力更好地理解和减轻与该毒素家族相关的健康风险。在这篇综述中,我们首先简要介绍这类毒素的发现历史以及导致其分离的事件。然后,我们重点介绍这些化合物的化学结构及其作用机制。最后,我们回顾了有关其毒性的体外、体内和体外研究,目的是对目前有关麻痹毒素毒理学的知识提供一个广泛的概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1