{"title":"Efficient Degradation of Ofloxacin by Magnetic CuFe<sub>2</sub>O<sub>4</sub> Coupled PMS System: Optimization, Degradation Pathways and Toxicity Evaluation.","authors":"Chuanhong Xing, Kang Chen, Limin Hu, Lanhua Liu","doi":"10.3390/toxics12100731","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic CuFe<sub>2</sub>O<sub>4</sub> was prepared with the modified sol-gel method and used for enhanced peroxymonosulfate (PMS) activation and ofloxacin (OFL) degradation. The OFL could almost degrade within 30 min at a catalyst dosage of 0.66 g/L, PMS concentration of 0.38 mM, and initial pH of 6.53 without adjustment, using response surface methodology (RSM) with Box-Behnken design (BBD). In the CuFe<sub>2</sub>O<sub>4</sub>/PMS system, the coexisting substances, including CO<sub>3</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, Cl<sup>-</sup> and humic acid, have little effect on the OFL degradation. The system also performs well in actual water, such as tap water and surface water (Mei Lake), indicating the excellent anti-interference ability of the system. The cyclic transformation between Cu(II)/Cu(I) and Fe(III)/Fe(II) triggers the generation of active radicals including SO<sub>4</sub><sup>•-</sup>, •OH, •O<sub>2</sub><sup>-</sup> and <sup>1</sup>O<sub>2</sub>. The OFL degradation pathway, mainly involving the dehydrogenation, deamination, hydroxylation, decarboxylation and carboxylation processes, was proposed using mass spectroscopy. Moreover, the toxicity assessment indicated that the end intermediates are environmentally friendly. This study is about how the CuFe<sub>2</sub>O<sub>4</sub>/PMS system performs well in PMS activation for refractory organic matter removal in wastewater.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510951/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100731","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic CuFe2O4 was prepared with the modified sol-gel method and used for enhanced peroxymonosulfate (PMS) activation and ofloxacin (OFL) degradation. The OFL could almost degrade within 30 min at a catalyst dosage of 0.66 g/L, PMS concentration of 0.38 mM, and initial pH of 6.53 without adjustment, using response surface methodology (RSM) with Box-Behnken design (BBD). In the CuFe2O4/PMS system, the coexisting substances, including CO32-, NO3-, SO42-, Cl- and humic acid, have little effect on the OFL degradation. The system also performs well in actual water, such as tap water and surface water (Mei Lake), indicating the excellent anti-interference ability of the system. The cyclic transformation between Cu(II)/Cu(I) and Fe(III)/Fe(II) triggers the generation of active radicals including SO4•-, •OH, •O2- and 1O2. The OFL degradation pathway, mainly involving the dehydrogenation, deamination, hydroxylation, decarboxylation and carboxylation processes, was proposed using mass spectroscopy. Moreover, the toxicity assessment indicated that the end intermediates are environmentally friendly. This study is about how the CuFe2O4/PMS system performs well in PMS activation for refractory organic matter removal in wastewater.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.