Exploring flagellar contributions to motility and virulence in Arcobacter butzleri.

IF 4 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY World journal of microbiology & biotechnology Pub Date : 2024-10-26 DOI:10.1007/s11274-024-04175-9
Raquel Santos, Cristiana Mateus, Mónica Oleastro, Susana Ferreira
{"title":"Exploring flagellar contributions to motility and virulence in Arcobacter butzleri.","authors":"Raquel Santos, Cristiana Mateus, Mónica Oleastro, Susana Ferreira","doi":"10.1007/s11274-024-04175-9","DOIUrl":null,"url":null,"abstract":"<p><p>Flagella is a well-known bacterial structure crucial for motility, which also plays pivotal roles in pathogenesis. Arcobacter butzleri, an enteropathogen, possesses a distinctive polar flagellum whose functional aspects remain largely unexplored. Upon investigating the factors influencing A. butzleri motility, we uncovered that environmental conditions like temperature, oxygen levels, and nutrient availability play a significant role. Furthermore, compounds that are found in human gut, such as short-chain fatty acids, mucins and bile salts, have a role in modulating the motility, and in turn, the pathogenicity of A. butzleri. Further investigation demonstrated that A. butzleri ΔflaA mutant showed a reduction in motility with a close to null average velocity, as well as a reduction on biofilm formation. In addition, compared with the wild-type, the ΔflaA mutant showed a decreased ability to invade Caco-2 cells and to adhere to mucins. Taken together, our findings support the role of environmental conditions and gut host associated compounds influencing key physiological aspects of the gastrointestinal pathogen A. butzleri, such as motility, and support the role of the flagellum on bacterial virulence.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"367"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04175-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Flagella is a well-known bacterial structure crucial for motility, which also plays pivotal roles in pathogenesis. Arcobacter butzleri, an enteropathogen, possesses a distinctive polar flagellum whose functional aspects remain largely unexplored. Upon investigating the factors influencing A. butzleri motility, we uncovered that environmental conditions like temperature, oxygen levels, and nutrient availability play a significant role. Furthermore, compounds that are found in human gut, such as short-chain fatty acids, mucins and bile salts, have a role in modulating the motility, and in turn, the pathogenicity of A. butzleri. Further investigation demonstrated that A. butzleri ΔflaA mutant showed a reduction in motility with a close to null average velocity, as well as a reduction on biofilm formation. In addition, compared with the wild-type, the ΔflaA mutant showed a decreased ability to invade Caco-2 cells and to adhere to mucins. Taken together, our findings support the role of environmental conditions and gut host associated compounds influencing key physiological aspects of the gastrointestinal pathogen A. butzleri, such as motility, and support the role of the flagellum on bacterial virulence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索鞭毛对 Arcobacter butzleri 运动和毒性的贡献。
鞭毛是一种众所周知的细菌结构,对运动至关重要,在致病过程中也发挥着关键作用。肠道致病菌丁兹勒弧杆菌(Arcobacter butzleri)具有独特的极鞭毛,其功能方面的研究在很大程度上仍处于空白。在研究影响丁兹勒弧杆菌运动能力的因素时,我们发现温度、氧气水平和营养供应等环境条件起着重要作用。此外,人类肠道中的化合物,如短链脂肪酸、粘蛋白和胆汁盐,也对丁兹勒氏菌的运动能力有调节作用,进而影响其致病性。进一步的研究表明,丁茨勒氏菌 ΔflaA 突变体的运动能力下降,平均速度接近为零,生物膜的形成也有所减少。此外,与野生型相比,ΔflaA 突变体侵入 Caco-2 细胞和粘附粘蛋白的能力也有所下降。总之,我们的研究结果支持环境条件和肠道宿主相关化合物对胃肠道病原体丁茨勒氏菌关键生理方面(如运动)的影响作用,并支持鞭毛对细菌毒力的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
World journal of microbiology & biotechnology
World journal of microbiology & biotechnology 工程技术-生物工程与应用微生物
CiteScore
6.30
自引率
2.40%
发文量
257
审稿时长
2.5 months
期刊介绍: World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology. Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions. Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories: · Virology · Simple isolation of microbes from local sources · Simple descriptions of an environment or reports on a procedure · Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism · Data reporting on host response to microbes · Optimization of a procedure · Description of the biological effects of not fully identified compounds or undefined extracts of natural origin · Data on not fully purified enzymes or procedures in which they are applied All articles published in the Journal are independently refereed.
期刊最新文献
Antifungal efficacy and biofumigation potential of hydrophobic deep eutectic solvents: Postharvest treatment against Monilinia fructicola and Botrytis Cinerea. Biofilm and Extracellular Polymeric Substance (EPS) synergy: Revealing Staphylococcus's role in nitrate bioremediation. Research progress on the function and regulatory pathways of amino acid permeases in fungi. Synergistic effects of gamma irradiation/salmide®, a sodium chlorite-based oxy-halogen, on microbiological control and the shelf life of chicken breasts. Unlocking the potential of Cupriavidus necator H16 as a platform for bioproducts production from carbon dioxide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1