Computationally guided high-throughput engineering of an anti-CRISPR protein for precise genome editing in human cells.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-10-21 DOI:10.1016/j.crmeth.2024.100882
Julia Marsiglia, Kia Vaalavirta, Estefany Knight, Muneaki Nakamura, Le Cong, Nicholas W Hughes
{"title":"Computationally guided high-throughput engineering of an anti-CRISPR protein for precise genome editing in human cells.","authors":"Julia Marsiglia, Kia Vaalavirta, Estefany Knight, Muneaki Nakamura, Le Cong, Nicholas W Hughes","doi":"10.1016/j.crmeth.2024.100882","DOIUrl":null,"url":null,"abstract":"<p><p>The application of CRISPR-Cas systems to genome editing has revolutionized experimental biology and is an emerging gene and cell therapy modality. CRISPR-Cas systems target off-target regions within the human genome, which is a challenge that must be addressed. Phages have evolved anti-CRISPR proteins (Acrs) to evade CRISPR-Cas-based immunity. Here, we engineer an Acr (AcrIIA4) to increase the precision of CRISPR-Cas-based genome targeting. We developed an approach that leveraged (1) computational guidance, (2) deep mutational scanning, and (3) highly parallel DNA repair measurements within human cells. In a single experiment, ∼10,000 Acr variants were tested. Variants that improved editing precision were tested in additional validation experiments that revealed robust enhancement of gene editing precision and synergy with a high-fidelity version of Cas9. This scalable high-throughput screening framework is a promising methodology to engineer Acrs to increase gene editing precision, which could be used to improve the safety of gene editing-based therapeutics.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The application of CRISPR-Cas systems to genome editing has revolutionized experimental biology and is an emerging gene and cell therapy modality. CRISPR-Cas systems target off-target regions within the human genome, which is a challenge that must be addressed. Phages have evolved anti-CRISPR proteins (Acrs) to evade CRISPR-Cas-based immunity. Here, we engineer an Acr (AcrIIA4) to increase the precision of CRISPR-Cas-based genome targeting. We developed an approach that leveraged (1) computational guidance, (2) deep mutational scanning, and (3) highly parallel DNA repair measurements within human cells. In a single experiment, ∼10,000 Acr variants were tested. Variants that improved editing precision were tested in additional validation experiments that revealed robust enhancement of gene editing precision and synergy with a high-fidelity version of Cas9. This scalable high-throughput screening framework is a promising methodology to engineer Acrs to increase gene editing precision, which could be used to improve the safety of gene editing-based therapeutics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算引导下的高通量抗 CRISPR 蛋白工程,用于在人类细胞中进行精确的基因组编辑。
CRISPR-Cas 系统在基因组编辑中的应用给实验生物学带来了革命性的变化,也是一种新兴的基因和细胞治疗方式。CRISPR-Cas 系统的目标是人类基因组中的脱靶区域,这是一个必须解决的挑战。噬菌体已经进化出抗CRISPR蛋白(Acrs)来规避基于CRISPR-Cas的免疫。在这里,我们设计了一种Acr(AcrIIA4)来提高基于CRISPR-Cas的基因组靶向的精确性。我们开发了一种方法,利用(1)计算引导、(2)深度突变扫描和(3)人体细胞内高度平行的 DNA 修复测量。在一次实验中,我们测试了 10,000 个 Acr 变体。在额外的验证实验中,对提高编辑精度的变体进行了测试,结果显示基因编辑精度和与高保真版 Cas9 的协同作用都得到了有力的提高。这种可扩展的高通量筛选框架是一种很有前景的方法,可用于设计Acrs以提高基因编辑的精确度,从而提高基于基因编辑的治疗方法的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Mimicking and analyzing the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1