Qanita Bani Baker, Mahmoud Hammad, Mohammed Al-Smadi, Heba Al-Jarrah, Rahaf Al-Hamouri, Sa'ad A Al-Zboon
{"title":"Enhanced COVID-19 Detection from X-ray Images with Convolutional Neural Network and Transfer Learning.","authors":"Qanita Bani Baker, Mahmoud Hammad, Mohammed Al-Smadi, Heba Al-Jarrah, Rahaf Al-Hamouri, Sa'ad A Al-Zboon","doi":"10.3390/jimaging10100250","DOIUrl":null,"url":null,"abstract":"<p><p>The global spread of Coronavirus (COVID-19) has prompted imperative research into scalable and effective detection methods to curb its outbreak. The early diagnosis of COVID-19 patients has emerged as a pivotal strategy in mitigating the spread of the disease. Automated COVID-19 detection using Chest X-ray (CXR) imaging has significant potential for facilitating large-scale screening and epidemic control efforts. This paper introduces a novel approach that employs state-of-the-art Convolutional Neural Network models (CNNs) for accurate COVID-19 detection. The employed datasets each comprised 15,000 X-ray images. We addressed both binary (Normal vs. Abnormal) and multi-class (Normal, COVID-19, Pneumonia) classification tasks. Comprehensive evaluations were performed by utilizing six distinct CNN-based models (Xception, Inception-V3, ResNet50, VGG19, DenseNet201, and InceptionResNet-V2) for both tasks. As a result, the Xception model demonstrated exceptional performance, achieving 98.13% accuracy, 98.14% precision, 97.65% recall, and a 97.89% F1-score in binary classification, while in multi-classification it yielded 87.73% accuracy, 90.20% precision, 87.73% recall, and an 87.49% F1-score. Moreover, the other utilized models, such as ResNet50, demonstrated competitive performance compared with many recent works.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10100250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The global spread of Coronavirus (COVID-19) has prompted imperative research into scalable and effective detection methods to curb its outbreak. The early diagnosis of COVID-19 patients has emerged as a pivotal strategy in mitigating the spread of the disease. Automated COVID-19 detection using Chest X-ray (CXR) imaging has significant potential for facilitating large-scale screening and epidemic control efforts. This paper introduces a novel approach that employs state-of-the-art Convolutional Neural Network models (CNNs) for accurate COVID-19 detection. The employed datasets each comprised 15,000 X-ray images. We addressed both binary (Normal vs. Abnormal) and multi-class (Normal, COVID-19, Pneumonia) classification tasks. Comprehensive evaluations were performed by utilizing six distinct CNN-based models (Xception, Inception-V3, ResNet50, VGG19, DenseNet201, and InceptionResNet-V2) for both tasks. As a result, the Xception model demonstrated exceptional performance, achieving 98.13% accuracy, 98.14% precision, 97.65% recall, and a 97.89% F1-score in binary classification, while in multi-classification it yielded 87.73% accuracy, 90.20% precision, 87.73% recall, and an 87.49% F1-score. Moreover, the other utilized models, such as ResNet50, demonstrated competitive performance compared with many recent works.