Zhengwei Ren, Xinyu Liu, Jing Xu, Yongsheng Zhang, Ming Fang
{"title":"LittleFaceNet: A Small-Sized Face Recognition Method Based on RetinaFace and AdaFace.","authors":"Zhengwei Ren, Xinyu Liu, Jing Xu, Yongsheng Zhang, Ming Fang","doi":"10.3390/jimaging11010024","DOIUrl":null,"url":null,"abstract":"<p><p>For surveillance video management in university laboratories, issues such as occlusion and low-resolution face capture often arise. Traditional face recognition algorithms are typically static and rely heavily on clear images, resulting in inaccurate recognition for low-resolution, small-sized faces. To address the challenges of occlusion and low-resolution person identification, this paper proposes a new face recognition framework by reconstructing Retinaface-Resnet and combining it with Quality-Adaptive Margin (adaface). Currently, although there are many target detection algorithms, they all require a large amount of data for training. However, datasets for low-resolution face detection are scarce, leading to poor detection performance of the models. This paper aims to solve Retinaface's weak face recognition capability in low-resolution scenarios and its potential inaccuracies in face bounding box localization when faces are at extreme angles or partially occluded. To this end, Spatial Depth-wise Separable Convolutions are introduced. Retinaface-Resnet is designed for face detection and localization, while adaface is employed to address low-resolution face recognition by using feature norm approximation to estimate image quality and applying an adaptive margin function. Additionally, a multi-object tracking algorithm is used to solve the problem of moving occlusion. Experimental results demonstrate significant improvements, achieving an accuracy of 96.12% on the WiderFace dataset and a recognition accuracy of 84.36% in practical laboratory applications.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766931/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11010024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
For surveillance video management in university laboratories, issues such as occlusion and low-resolution face capture often arise. Traditional face recognition algorithms are typically static and rely heavily on clear images, resulting in inaccurate recognition for low-resolution, small-sized faces. To address the challenges of occlusion and low-resolution person identification, this paper proposes a new face recognition framework by reconstructing Retinaface-Resnet and combining it with Quality-Adaptive Margin (adaface). Currently, although there are many target detection algorithms, they all require a large amount of data for training. However, datasets for low-resolution face detection are scarce, leading to poor detection performance of the models. This paper aims to solve Retinaface's weak face recognition capability in low-resolution scenarios and its potential inaccuracies in face bounding box localization when faces are at extreme angles or partially occluded. To this end, Spatial Depth-wise Separable Convolutions are introduced. Retinaface-Resnet is designed for face detection and localization, while adaface is employed to address low-resolution face recognition by using feature norm approximation to estimate image quality and applying an adaptive margin function. Additionally, a multi-object tracking algorithm is used to solve the problem of moving occlusion. Experimental results demonstrate significant improvements, achieving an accuracy of 96.12% on the WiderFace dataset and a recognition accuracy of 84.36% in practical laboratory applications.