Plant Detection in RGB Images from Unmanned Aerial Vehicles Using Segmentation by Deep Learning and an Impact of Model Accuracy on Downstream Analysis.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2025-01-20 DOI:10.3390/jimaging11010028
Mikhail V Kozhekin, Mikhail A Genaev, Evgenii G Komyshev, Zakhar A Zavyalov, Dmitry A Afonnikov
{"title":"Plant Detection in RGB Images from Unmanned Aerial Vehicles Using Segmentation by Deep Learning and an Impact of Model Accuracy on Downstream Analysis.","authors":"Mikhail V Kozhekin, Mikhail A Genaev, Evgenii G Komyshev, Zakhar A Zavyalov, Dmitry A Afonnikov","doi":"10.3390/jimaging11010028","DOIUrl":null,"url":null,"abstract":"<p><p>Crop field monitoring using unmanned aerial vehicles (UAVs) is one of the most important technologies for plant growth control in modern precision agriculture. One of the important and widely used tasks in field monitoring is plant stand counting. The accurate identification of plants in field images provides estimates of plant number per unit area, detects missing seedlings, and predicts crop yield. Current methods are based on the detection of plants in images obtained from UAVs by means of computer vision algorithms and deep learning neural networks. These approaches depend on image spatial resolution and the quality of plant markup. The performance of automatic plant detection may affect the efficiency of downstream analysis of a field cropping pattern. In the present work, a method is presented for detecting the plants of five species in images acquired via a UAV on the basis of image segmentation by deep learning algorithms (convolutional neural networks). Twelve orthomosaics were collected and marked at several sites in Russia to train and test the neural network algorithms. Additionally, 17 existing datasets of various spatial resolutions and markup quality levels from the Roboflow service were used to extend training image sets. Finally, we compared several texture features between manually evaluated and neural-network-estimated plant masks. It was demonstrated that adding images to the training sample (even those of lower resolution and markup quality) improves plant stand counting significantly. The work indicates how the accuracy of plant detection in field images may affect their cropping pattern evaluation by means of texture characteristics. For some of the characteristics (GLCM mean, GLRM long run, GLRM run ratio) the estimates between images marked manually and automatically are close. For others, the differences are large and may lead to erroneous conclusions about the properties of field cropping patterns. Nonetheless, overall, plant detection algorithms with a higher accuracy show better agreement with the estimates of texture parameters obtained from manually marked images.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11010028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Crop field monitoring using unmanned aerial vehicles (UAVs) is one of the most important technologies for plant growth control in modern precision agriculture. One of the important and widely used tasks in field monitoring is plant stand counting. The accurate identification of plants in field images provides estimates of plant number per unit area, detects missing seedlings, and predicts crop yield. Current methods are based on the detection of plants in images obtained from UAVs by means of computer vision algorithms and deep learning neural networks. These approaches depend on image spatial resolution and the quality of plant markup. The performance of automatic plant detection may affect the efficiency of downstream analysis of a field cropping pattern. In the present work, a method is presented for detecting the plants of five species in images acquired via a UAV on the basis of image segmentation by deep learning algorithms (convolutional neural networks). Twelve orthomosaics were collected and marked at several sites in Russia to train and test the neural network algorithms. Additionally, 17 existing datasets of various spatial resolutions and markup quality levels from the Roboflow service were used to extend training image sets. Finally, we compared several texture features between manually evaluated and neural-network-estimated plant masks. It was demonstrated that adding images to the training sample (even those of lower resolution and markup quality) improves plant stand counting significantly. The work indicates how the accuracy of plant detection in field images may affect their cropping pattern evaluation by means of texture characteristics. For some of the characteristics (GLCM mean, GLRM long run, GLRM run ratio) the estimates between images marked manually and automatically are close. For others, the differences are large and may lead to erroneous conclusions about the properties of field cropping patterns. Nonetheless, overall, plant detection algorithms with a higher accuracy show better agreement with the estimates of texture parameters obtained from manually marked images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
On the implosion of a compressible fluid I: Smooth self-similar inviscid profiles
IF 4.9 1区 数学Annals of MathematicsPub Date : 2022-09-01 DOI: 10.4007/annals.2022.196.2.3
F. Merle, P. Raphaël, I. Rodnianski, J. Szeftel
Smooth self-similar imploding profiles to 3D compressible Euler
IF 0 arXiv (Cornell University)Pub Date : 2023-01-24 DOI: 10.48550/arxiv.2301.10101
Buckmaster, Tristan, Cao-Labora, Gonzalo, Gómez-Serrano, Javier
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
Plant Detection in RGB Images from Unmanned Aerial Vehicles Using Segmentation by Deep Learning and an Impact of Model Accuracy on Downstream Analysis. Blink Detection Using 3D Convolutional Neural Architectures and Analysis of Accumulated Frame Predictions. Increasing Neural-Based Pedestrian Detectors' Robustness to Adversarial Patch Attacks Using Anomaly Localization. LittleFaceNet: A Small-Sized Face Recognition Method Based on RetinaFace and AdaFace. A Local Adversarial Attack with a Maximum Aggregated Region Sparseness Strategy for 3D Objects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1