{"title":"Distinguishing of Histopathological Staging Features of H-E Stained Human cSCC by Microscopical Multispectral Imaging.","authors":"Rujuan Wu, Jiayi Yang, Qi Chen, Changxing Yang, Qianqian Ge, Danni Rui, Huazhong Xiang, Dawei Zhang, Cheng Wang, Xiaoqing Zhao","doi":"10.3390/bios14100467","DOIUrl":null,"url":null,"abstract":"<p><p>Cutaneous squamous cell carcinoma (cSCC) is the second most common malignant skin tumor. Early and precise diagnosis of tumor staging is crucial for long-term outcomes. While pathological diagnosis has traditionally served as the gold standard, the assessment of differentiation levels heavily depends on subjective judgments. Therefore, how to improve the diagnosis accuracy and objectivity of pathologists has become an urgent problem to be solved. We used multispectral imaging (MSI) to enhance tumor classification. The hematoxylin and eosin (H&E) stained cSCC slides were from Shanghai Ruijin Hospital. Scale-invariant feature transform was applied to multispectral images for image stitching, while the adaptive threshold segmentation method and random forest segmentation method were used for image segmentation, respectively. Synthetic pseudo-color images effectively highlight tissue differences. Quantitative analysis confirms significant variation in the nuclear area between normal and cSCC tissues (<i>p</i> < 0.001), supported by an AUC of 1 in ROC analysis. The AUC within cSCC tissues is 0.57. Further study shows higher nuclear atypia in poorly differentiated cSCC tissues compared to well-differentiated cSCC (<i>p</i> < 0.001), also with an AUC of 1. Lastly, well differentiated cSCC tissues show more and larger keratin pearls. These results have shown that combined MSI with imaging processing techniques will improve H&E stained human cSCC diagnosis accuracy, and it will be well utilized to distinguish histopathological staging features.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506349/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100467","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common malignant skin tumor. Early and precise diagnosis of tumor staging is crucial for long-term outcomes. While pathological diagnosis has traditionally served as the gold standard, the assessment of differentiation levels heavily depends on subjective judgments. Therefore, how to improve the diagnosis accuracy and objectivity of pathologists has become an urgent problem to be solved. We used multispectral imaging (MSI) to enhance tumor classification. The hematoxylin and eosin (H&E) stained cSCC slides were from Shanghai Ruijin Hospital. Scale-invariant feature transform was applied to multispectral images for image stitching, while the adaptive threshold segmentation method and random forest segmentation method were used for image segmentation, respectively. Synthetic pseudo-color images effectively highlight tissue differences. Quantitative analysis confirms significant variation in the nuclear area between normal and cSCC tissues (p < 0.001), supported by an AUC of 1 in ROC analysis. The AUC within cSCC tissues is 0.57. Further study shows higher nuclear atypia in poorly differentiated cSCC tissues compared to well-differentiated cSCC (p < 0.001), also with an AUC of 1. Lastly, well differentiated cSCC tissues show more and larger keratin pearls. These results have shown that combined MSI with imaging processing techniques will improve H&E stained human cSCC diagnosis accuracy, and it will be well utilized to distinguish histopathological staging features.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.