A Double-Stranded Aptamer for Highly Sensitive Fluorescent Detection of Glutathione S-Transferases.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-10-03 DOI:10.3390/bios14100476
Wei Cui, Suping Li, Jiahao Zeng, Chen Li, Zhaofeng Li, Xiaohong Wen, Suxia Bao, Yang Mei, Xiangxian Meng, Qiuping Guo
{"title":"A Double-Stranded Aptamer for Highly Sensitive Fluorescent Detection of Glutathione S-Transferases.","authors":"Wei Cui, Suping Li, Jiahao Zeng, Chen Li, Zhaofeng Li, Xiaohong Wen, Suxia Bao, Yang Mei, Xiangxian Meng, Qiuping Guo","doi":"10.3390/bios14100476","DOIUrl":null,"url":null,"abstract":"<p><p>Aptamer-based biosensors have been widely constructed and applied to detect diverse targets. Glutathione S-transferase (GST), a pivotal phase II metabolic enzyme, plays a critical role in biotransformation in vivo, and aberrant GST expression is associated with various health risks. Herein, aptamers targeting GST were systematically selected from a randomized single-stranded DNA (ssDNA) library of 79 nucleotides (nt) using a biotinylated GST-immobilized streptavidin agarose (SA) bead SELEX technology. Following rigorous screening across eight rounds, four aptamers with strikingly similar secondary structures emerged. Among these, Seq3 exhibited the highest affinity towards GST and was selected for further optimization. A semi-rational post-SELEX truncation strategy was then employed based on base composition analysis, secondary structure analysis and affinity assessment. This strategy enabled the systematic removal of redundant nucleotides in Seq3 without compromising its affinity, ultimately yielding a truncated aptamer, Seq3-3, which retains its specificity with a compact 39nt length. Building upon Seq3-3, a double-stranded fluorescent aptamer probe was ingeniously designed for the in vitro detection of GST. The detection mechanism hinges on the competitive displacement of the complementary chain from the probe, mediated by the target protein, leading to the separation of the antisense oligonucleotide from the double-stranded complex. This process triggers the restoration of the fluorescence signal, enabling sensitive detection, and the probe exhibits excellent response within a linear range of GST activity ranging from 0 to 1500 U/L. The results show that not only an efficient strategy for screening robust and practicable aptamers but also an ultrahighly sensitive detection platform for GST was established.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505714/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100476","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aptamer-based biosensors have been widely constructed and applied to detect diverse targets. Glutathione S-transferase (GST), a pivotal phase II metabolic enzyme, plays a critical role in biotransformation in vivo, and aberrant GST expression is associated with various health risks. Herein, aptamers targeting GST were systematically selected from a randomized single-stranded DNA (ssDNA) library of 79 nucleotides (nt) using a biotinylated GST-immobilized streptavidin agarose (SA) bead SELEX technology. Following rigorous screening across eight rounds, four aptamers with strikingly similar secondary structures emerged. Among these, Seq3 exhibited the highest affinity towards GST and was selected for further optimization. A semi-rational post-SELEX truncation strategy was then employed based on base composition analysis, secondary structure analysis and affinity assessment. This strategy enabled the systematic removal of redundant nucleotides in Seq3 without compromising its affinity, ultimately yielding a truncated aptamer, Seq3-3, which retains its specificity with a compact 39nt length. Building upon Seq3-3, a double-stranded fluorescent aptamer probe was ingeniously designed for the in vitro detection of GST. The detection mechanism hinges on the competitive displacement of the complementary chain from the probe, mediated by the target protein, leading to the separation of the antisense oligonucleotide from the double-stranded complex. This process triggers the restoration of the fluorescence signal, enabling sensitive detection, and the probe exhibits excellent response within a linear range of GST activity ranging from 0 to 1500 U/L. The results show that not only an efficient strategy for screening robust and practicable aptamers but also an ultrahighly sensitive detection platform for GST was established.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高灵敏度荧光检测谷胱甘肽 S 转化酶的双链色聚体。
基于色聚体的生物传感器已被广泛构建和应用于检测各种目标。谷胱甘肽 S-转移酶(GST)是一种关键的第二阶段代谢酶,在体内生物转化中起着关键作用,而 GST 的异常表达与各种健康风险有关。在本研究中,我们采用生物素化的 GST 固定化链霉亲和素琼脂糖(SA)珠 SELEX 技术,从一个 79 个核苷酸(nt)的随机单链 DNA(ssDNA)文库中系统地筛选出了靶向 GST 的适配体。经过八轮严格筛选,四种具有惊人相似二级结构的适配体脱颖而出。其中,Seq3 对 GST 的亲和力最高,被选中进行进一步优化。随后,在碱基组成分析、二级结构分析和亲和力评估的基础上,采用了半合理的 SELEX 后截短策略。这一策略在不影响 Seq3 亲和力的前提下,系统地删除了 Seq3 中的冗余核苷酸,最终得到了截短的适配体 Seq3-3,它以 39nt 的紧凑长度保持了特异性。在 Seq3-3 的基础上,我们巧妙地设计了一种双链荧光适配体探针,用于体外检测 GST。其检测机制取决于目标蛋白对探针互补链的竞争性置换,从而导致反义寡核苷酸从双链复合物中分离出来。这一过程会触发荧光信号的恢复,从而实现灵敏的检测,探针在 GST 活性的线性范围(0 至 1500 U/L)内表现出极佳的响应。研究结果表明,该方法不仅为筛选稳健实用的适配体提供了有效策略,而且还建立了一个超高灵敏度的 GST 检测平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Source Localization and Classification of Pulmonary Valve-Originated Electrocardiograms Using Volume Conductor Modeling with Anatomical Models. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1