{"title":"A Nanoparticle-Coated Cellulose Acetate Membrane for Highly Efficient, Low-Cost Circulating Tumor Cell Detection.","authors":"Yize Zhao, Yaqi Pan, Hao Sun, Pengfei Huo, Guangtong Wang, Shaoqin Liu","doi":"10.3390/bios14100472","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting circulating tumor cells has exhibited great significance in treating cancers since its concentration is an index strongly associated with the development and transfer of the tumor. However, the present commercial method for CTC detection is still expensive, because special antibodies and complicated devices must be used for cell separation and imaging. Hence, it is quite necessary to apply alternative materials and methods to decrease the cost of CTC detection. In this article, we coated a cellulose acetate membrane with nanoparticles formed by the polymerization of melamine and furfural, creating a surface with nanoscale roughness for the highly efficient capture of the sparse CTCs in a blood sample. Subsequently, the CTCs on the surface can be quantitatively detected by colorimetry with the aid of a COF-based nanozyme. The detection limit (LOD) can be as low as 3 cells/mL, which is the lowest LOD among the colorimetric methods to our knowledge. Considering the low cost of fabricating the membrane for CTC capture and the robustness of nanozymes compared with natural enzymes, this CTC detection approach displays great potential to decrease the financial burden of commercial CTC detection.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505997/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100472","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting circulating tumor cells has exhibited great significance in treating cancers since its concentration is an index strongly associated with the development and transfer of the tumor. However, the present commercial method for CTC detection is still expensive, because special antibodies and complicated devices must be used for cell separation and imaging. Hence, it is quite necessary to apply alternative materials and methods to decrease the cost of CTC detection. In this article, we coated a cellulose acetate membrane with nanoparticles formed by the polymerization of melamine and furfural, creating a surface with nanoscale roughness for the highly efficient capture of the sparse CTCs in a blood sample. Subsequently, the CTCs on the surface can be quantitatively detected by colorimetry with the aid of a COF-based nanozyme. The detection limit (LOD) can be as low as 3 cells/mL, which is the lowest LOD among the colorimetric methods to our knowledge. Considering the low cost of fabricating the membrane for CTC capture and the robustness of nanozymes compared with natural enzymes, this CTC detection approach displays great potential to decrease the financial burden of commercial CTC detection.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.