A Review of Advanced Sensor Technologies for Aquatic Products Freshness Assessment in Cold Chain Logistics.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-09-30 DOI:10.3390/bios14100468
Baichuan Wang, Kang Liu, Guangfen Wei, Aixiang He, Weifu Kong, Xiaoshuan Zhang
{"title":"A Review of Advanced Sensor Technologies for Aquatic Products Freshness Assessment in Cold Chain Logistics.","authors":"Baichuan Wang, Kang Liu, Guangfen Wei, Aixiang He, Weifu Kong, Xiaoshuan Zhang","doi":"10.3390/bios14100468","DOIUrl":null,"url":null,"abstract":"<p><p>The evaluation of the upkeep and freshness of aquatic products within the cold chain is crucial due to their perishable nature, which can significantly impact both quality and safety. Conventional methods for assessing freshness in the cold chain have inherent limitations regarding specificity and accuracy, often requiring substantial time and effort. Recently, advanced sensor technologies have been developed for freshness assessment, enabling real-time and non-invasive monitoring via the detection of volatile organic compounds, biochemical markers, and physical properties. The integration of sensor technologies into cold chain logistics enhances the ability to maintain the quality and safety of aquatic products. This review examines the advancements made in multifunctional sensor devices for the freshness assessment of aquatic products in cold chain logistics, as well as the application of pattern recognition algorithms for identification and classification. It begins by outlining the categories of freshness criteria, followed by an exploration of the development of four key sensor devices: electronic noses, electronic tongues, biosensors, and flexible sensors. Furthermore, the review discusses the implementation of advanced pattern recognition algorithms in sensor devices for freshness detection and evaluation. It highlights the current status and future potential of sensor technologies for aquatic products within the cold chain, while also addressing the significant challenges that remain to be overcome.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100468","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The evaluation of the upkeep and freshness of aquatic products within the cold chain is crucial due to their perishable nature, which can significantly impact both quality and safety. Conventional methods for assessing freshness in the cold chain have inherent limitations regarding specificity and accuracy, often requiring substantial time and effort. Recently, advanced sensor technologies have been developed for freshness assessment, enabling real-time and non-invasive monitoring via the detection of volatile organic compounds, biochemical markers, and physical properties. The integration of sensor technologies into cold chain logistics enhances the ability to maintain the quality and safety of aquatic products. This review examines the advancements made in multifunctional sensor devices for the freshness assessment of aquatic products in cold chain logistics, as well as the application of pattern recognition algorithms for identification and classification. It begins by outlining the categories of freshness criteria, followed by an exploration of the development of four key sensor devices: electronic noses, electronic tongues, biosensors, and flexible sensors. Furthermore, the review discusses the implementation of advanced pattern recognition algorithms in sensor devices for freshness detection and evaluation. It highlights the current status and future potential of sensor technologies for aquatic products within the cold chain, while also addressing the significant challenges that remain to be overcome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于冷链物流中水产品新鲜度评估的先进传感器技术综述。
由于水产品易腐烂,其质量和安全都会受到严重影响,因此对冷链中水产品的保鲜和新鲜度进行评估至关重要。传统的冷链新鲜度评估方法在特异性和准确性方面存在固有的局限性,通常需要花费大量的时间和精力。最近,人们开发出了用于新鲜度评估的先进传感器技术,可通过检测挥发性有机化合物、生化标记和物理特性进行实时和非侵入式监测。将传感器技术整合到冷链物流中,可提高维护水产品质量和安全的能力。本综述探讨了冷链物流中用于水产品新鲜度评估的多功能传感器设备所取得的进展,以及模式识别算法在识别和分类方面的应用。报告首先概述了新鲜度标准的类别,然后探讨了四种关键传感器设备的发展:电子鼻、电子舌、生物传感器和柔性传感器。此外,综述还讨论了如何在传感器设备中采用先进的模式识别算法进行新鲜度检测和评估。报告强调了冷链中水产品传感器技术的现状和未来潜力,同时也探讨了仍有待克服的重大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Source Localization and Classification of Pulmonary Valve-Originated Electrocardiograms Using Volume Conductor Modeling with Anatomical Models. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1