Advances in Genotyping Detection of Fragmented Nucleic Acids.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-09-28 DOI:10.3390/bios14100465
Qian Liu, Yun Chen, Hao Qi
{"title":"Advances in Genotyping Detection of Fragmented Nucleic Acids.","authors":"Qian Liu, Yun Chen, Hao Qi","doi":"10.3390/bios14100465","DOIUrl":null,"url":null,"abstract":"<p><p>Single nucleotide variant (SNV) detection is pivotal in various fields, including disease diagnosis, viral screening, genetically modified organism (GMO) identification, and genotyping. However, detecting SNVs presents significant challenges due to the fragmentation of nucleic acids caused by cellular apoptosis, molecular shearing, and physical degradation processes such as heating. Fragmented nucleic acids often exhibit variable lengths and inconsistent breakpoints, complicating the accurate detection of SNVs. This article delves into the underlying causes of nucleic acid fragmentation and synthesizes the strengths and limitations of next-generation sequencing technology, high-resolution melting curves, molecular probes, and CRISPR-based approaches for SNV detection in fragmented nucleic acids. By providing a detailed comparative analysis, it seeks to offer valuable insights for researchers working to overcome the challenges of SNV detection in fragmented samples, ultimately advancing the accurate and efficient detection of single nucleotide variants across diverse applications.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100465","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single nucleotide variant (SNV) detection is pivotal in various fields, including disease diagnosis, viral screening, genetically modified organism (GMO) identification, and genotyping. However, detecting SNVs presents significant challenges due to the fragmentation of nucleic acids caused by cellular apoptosis, molecular shearing, and physical degradation processes such as heating. Fragmented nucleic acids often exhibit variable lengths and inconsistent breakpoints, complicating the accurate detection of SNVs. This article delves into the underlying causes of nucleic acid fragmentation and synthesizes the strengths and limitations of next-generation sequencing technology, high-resolution melting curves, molecular probes, and CRISPR-based approaches for SNV detection in fragmented nucleic acids. By providing a detailed comparative analysis, it seeks to offer valuable insights for researchers working to overcome the challenges of SNV detection in fragmented samples, ultimately advancing the accurate and efficient detection of single nucleotide variants across diverse applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
片段核酸基因分型检测的进展。
单核苷酸变异体(SNV)检测在疾病诊断、病毒筛查、转基因生物(GMO)鉴定和基因分型等多个领域都至关重要。然而,由于细胞凋亡、分子剪切和加热等物理降解过程会导致核酸片段化,因此检测 SNV 面临着巨大的挑战。碎裂的核酸通常表现出不同的长度和不一致的断裂点,使 SNV 的准确检测变得更加复杂。本文深入探讨了核酸片段化的根本原因,综述了下一代测序技术、高分辨率熔解曲线、分子探针和基于 CRISPR 的方法在片段核酸 SNV 检测中的优势和局限性。通过提供详细的比较分析,该书力图为研究人员克服片段样本中 SNV 检测所面临的挑战提供有价值的见解,最终推动在各种应用中准确、高效地检测单核苷酸变异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Source Localization and Classification of Pulmonary Valve-Originated Electrocardiograms Using Volume Conductor Modeling with Anatomical Models. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1