Simone Gastaldon, Pierpaolo Busan, Nicola Molinaro, Mikel Lizarazu
{"title":"Cortical Tracking of Speech Is Reduced in Adults Who Stutter When Listening for Speaking.","authors":"Simone Gastaldon, Pierpaolo Busan, Nicola Molinaro, Mikel Lizarazu","doi":"10.1044/2024_JSLHR-24-00227","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to investigate cortical tracking of speech (CTS) in adults who stutter (AWS) compared to typically fluent adults (TFAs) to test the involvement of the speech-motor network in tracking rhythmic speech information.</p><p><strong>Method: </strong>Participants' electroencephalogram was recorded while they simply listened to sentences (listening only) or completed them by naming a picture (listening for speaking), thus manipulating the upcoming involvement of speech production. We analyzed speech-brain coherence and brain connectivity during listening.</p><p><strong>Results: </strong>During the listening-for-speaking task, AWS exhibited reduced CTS in the 3- to 5-Hz range (theta), corresponding to the syllabic rhythm. The effect was localized in the left inferior parietal and right pre/supplementary motor regions. Connectivity analyses revealed that TFAs had stronger information transfer in the theta range in both tasks in fronto-temporo-parietal regions. When considering the whole sample of participants, increased connectivity from the right superior temporal cortex to the left sensorimotor cortex was correlated with faster naming times in the listening-for-speaking task.</p><p><strong>Conclusions: </strong>Atypical speech-motor functioning in stuttering impacts speech perception, especially in situations requiring articulatory alertness. The involvement of frontal and (pre)motor regions in CTS in TFAs is highlighted. Further investigation is needed into speech perception in individuals with speech-motor deficits, especially when smooth transitioning between listening and speaking is required, such as in real-life conversational settings.</p><p><strong>Supplemental material: </strong>https://doi.org/10.23641/asha.27234885.</p>","PeriodicalId":51254,"journal":{"name":"Journal of Speech Language and Hearing Research","volume":" ","pages":"4339-4357"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Speech Language and Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1044/2024_JSLHR-24-00227","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The purpose of this study was to investigate cortical tracking of speech (CTS) in adults who stutter (AWS) compared to typically fluent adults (TFAs) to test the involvement of the speech-motor network in tracking rhythmic speech information.
Method: Participants' electroencephalogram was recorded while they simply listened to sentences (listening only) or completed them by naming a picture (listening for speaking), thus manipulating the upcoming involvement of speech production. We analyzed speech-brain coherence and brain connectivity during listening.
Results: During the listening-for-speaking task, AWS exhibited reduced CTS in the 3- to 5-Hz range (theta), corresponding to the syllabic rhythm. The effect was localized in the left inferior parietal and right pre/supplementary motor regions. Connectivity analyses revealed that TFAs had stronger information transfer in the theta range in both tasks in fronto-temporo-parietal regions. When considering the whole sample of participants, increased connectivity from the right superior temporal cortex to the left sensorimotor cortex was correlated with faster naming times in the listening-for-speaking task.
Conclusions: Atypical speech-motor functioning in stuttering impacts speech perception, especially in situations requiring articulatory alertness. The involvement of frontal and (pre)motor regions in CTS in TFAs is highlighted. Further investigation is needed into speech perception in individuals with speech-motor deficits, especially when smooth transitioning between listening and speaking is required, such as in real-life conversational settings.
期刊介绍:
Mission: JSLHR publishes peer-reviewed research and other scholarly articles on the normal and disordered processes in speech, language, hearing, and related areas such as cognition, oral-motor function, and swallowing. The journal is an international outlet for both basic research on communication processes and clinical research pertaining to screening, diagnosis, and management of communication disorders as well as the etiologies and characteristics of these disorders. JSLHR seeks to advance evidence-based practice by disseminating the results of new studies as well as providing a forum for critical reviews and meta-analyses of previously published work.
Scope: The broad field of communication sciences and disorders, including speech production and perception; anatomy and physiology of speech and voice; genetics, biomechanics, and other basic sciences pertaining to human communication; mastication and swallowing; speech disorders; voice disorders; development of speech, language, or hearing in children; normal language processes; language disorders; disorders of hearing and balance; psychoacoustics; and anatomy and physiology of hearing.