{"title":"Optimized memory augmented graph neural network-based DoS attacks detection in wireless sensor network.","authors":"Ayyasamy Pushpalatha, Sunkari Pradeep, Matta Venkata Pullarao, Shanmuganathan Sankar","doi":"10.1080/0954898X.2024.2392786","DOIUrl":null,"url":null,"abstract":"<p><p>Wireless Sensor Networks (WSNs) are mainly used for data monitoring and collection purposes. Usually, they are made up of numerous sensor nodes that are utilized to gather data remotely. Each sensor node is small and inexpensive. Due to the increasing intelligence, frequency, and complexity of these malicious attacks, traditional attack detection is less effective. In this manuscript, Optimized Memory Augmented Graph Neural Network-based DoS Attacks Detection in Wireless Sensor Network (DoS-AD-MAGNN-WSN) is proposed. Here, the input data is amassed from WSN-DS dataset. The input data is pre-processing by secure adaptive event-triggered filter for handling negation and stemming. Then, the output is fed to nested patch-based feature extraction to extract the optimal features. The extracted features are given to MAGNN for the effective classification of blackhole, flooding, grayhole, scheduling, and normal. The weight parameter of MAGNN is optimized by gradient-based optimizers for better accuracy. The proposed method is activated in Python, and it attains 31.20%, 23.30%, and 26.43% higher accuracy analyzed with existing techniques, such as CNN-LSTM-based method for Denial of Service attacks detection in WSNs (CNN-DoS-AD-WSN), Trust-based DoS attack detection in WSNs for reliable data transmission (TB-DoS-AD-WSN-RDT), and FBDR-Fuzzy-based DoS attack detection with recovery mechanism for WSNs (FBDR-DoS-AD-RM-WSN), respectively.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-27"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2392786","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Wireless Sensor Networks (WSNs) are mainly used for data monitoring and collection purposes. Usually, they are made up of numerous sensor nodes that are utilized to gather data remotely. Each sensor node is small and inexpensive. Due to the increasing intelligence, frequency, and complexity of these malicious attacks, traditional attack detection is less effective. In this manuscript, Optimized Memory Augmented Graph Neural Network-based DoS Attacks Detection in Wireless Sensor Network (DoS-AD-MAGNN-WSN) is proposed. Here, the input data is amassed from WSN-DS dataset. The input data is pre-processing by secure adaptive event-triggered filter for handling negation and stemming. Then, the output is fed to nested patch-based feature extraction to extract the optimal features. The extracted features are given to MAGNN for the effective classification of blackhole, flooding, grayhole, scheduling, and normal. The weight parameter of MAGNN is optimized by gradient-based optimizers for better accuracy. The proposed method is activated in Python, and it attains 31.20%, 23.30%, and 26.43% higher accuracy analyzed with existing techniques, such as CNN-LSTM-based method for Denial of Service attacks detection in WSNs (CNN-DoS-AD-WSN), Trust-based DoS attack detection in WSNs for reliable data transmission (TB-DoS-AD-WSN-RDT), and FBDR-Fuzzy-based DoS attack detection with recovery mechanism for WSNs (FBDR-DoS-AD-RM-WSN), respectively.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.