SLB - SMOTE logistic blending hybrid machine learning model for chronic polycystic ovary syndrome prediction with correlated feature selection.

Informatics for health & social care Pub Date : 2024-10-01 Epub Date: 2024-10-27 DOI:10.1080/17538157.2024.2405868
S Vairachilai, Devarakonda Anuhya, Anjeleen Tirkey, S P Raja
{"title":"SLB - SMOTE logistic blending hybrid machine learning model for chronic polycystic ovary syndrome prediction with correlated feature selection.","authors":"S Vairachilai, Devarakonda Anuhya, Anjeleen Tirkey, S P Raja","doi":"10.1080/17538157.2024.2405868","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In this study, we aimed to develop a machine learning (ML) model for predicting Polycystic Ovary Syndrome (PCOS) based on demographic, clinical, and biochemical parameters.</p><p><strong>Methodology: </strong>We collected data from Kaggle, which included information on age, body mass index, menstrual cycle length, follicle-stimulating hormone, hair growth, and more. Using this data, we trained several traditional ML and ensemble algorithms to predict PCOS.</p><p><strong>Results: </strong>Among the traditional ML algorithms, Logistic Regression emerged as the best, boasting the highest accuracy of 0.91 and an AUC of 0.90. In ensemble algorithms, the Blending algorithm outperformed other ensemble methods, also achieving an accuracy of 0.91 and an AUC of 0.90, with a balanced precision and recall of 0.88.</p><p><strong>Significance of the research: </strong>These results establish Logistic Regression and the Blending algorithm as optimal choices for accurate and reliable PCOS prediction, demonstrating strong discriminative power and the ability to correctly classify PCOS cases.</p>","PeriodicalId":101409,"journal":{"name":"Informatics for health & social care","volume":" ","pages":"190-211"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics for health & social care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17538157.2024.2405868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: In this study, we aimed to develop a machine learning (ML) model for predicting Polycystic Ovary Syndrome (PCOS) based on demographic, clinical, and biochemical parameters.

Methodology: We collected data from Kaggle, which included information on age, body mass index, menstrual cycle length, follicle-stimulating hormone, hair growth, and more. Using this data, we trained several traditional ML and ensemble algorithms to predict PCOS.

Results: Among the traditional ML algorithms, Logistic Regression emerged as the best, boasting the highest accuracy of 0.91 and an AUC of 0.90. In ensemble algorithms, the Blending algorithm outperformed other ensemble methods, also achieving an accuracy of 0.91 and an AUC of 0.90, with a balanced precision and recall of 0.88.

Significance of the research: These results establish Logistic Regression and the Blending algorithm as optimal choices for accurate and reliable PCOS prediction, demonstrating strong discriminative power and the ability to correctly classify PCOS cases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SLB - 利用相关特征选择预测慢性多囊卵巢综合征的 SMOTE 逻辑混合混合机器学习模型。
目的:本研究旨在开发一种机器学习(ML)模型,根据人口统计学、临床和生化参数预测多囊卵巢综合征(PCOS):在这项研究中,我们旨在开发一种机器学习(ML)模型,用于根据人口、临床和生化参数预测多囊卵巢综合症(PCOS):我们从 Kaggle 收集了数据,其中包括年龄、体重指数、月经周期长度、卵泡刺激素、毛发生长等信息。利用这些数据,我们训练了几种传统的 ML 算法和集合算法来预测多囊卵巢综合症:在传统的 ML 算法中,逻辑回归(Logistic Regression)是最好的,准确率最高,达到 0.91,AUC 为 0.90。在集合算法中,混合算法的表现优于其他集合方法,准确率也达到了 0.91,AUC 为 0.90,精确度和召回率均为 0.88:这些结果表明,Logistic 回归和混合算法是准确可靠地预测多囊卵巢综合症的最佳选择,具有很强的判别能力和正确分类多囊卵巢综合症病例的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Validation of the eHealth literacy scales: comparison between the shorter and longer versions. User-centred design of a patient portal for persons living with home mechanical ventilation and long-term tracheostomy: a mixed methods study. Usability testing of a palliative care information resource - outcomes from the formative evaluation of the CarerHelp Toolkit prototype. Identifying biological markers and sociodemographic factors that influence the gap between phenotypic and chronological ages. Multimorbidity in neurodegenerative diseases: a network analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1