Tian Yu, Qian Liu, Enkai Guo, Ning Qi*, Feng Ren and Zhiquan Chen*,
{"title":"A Thermally Rearranged Poly(benzoxazole) Composite Membrane for Gas Separation Prepared by Vapor Phase Growth","authors":"Tian Yu, Qian Liu, Enkai Guo, Ning Qi*, Feng Ren and Zhiquan Chen*, ","doi":"10.1021/acsapm.4c0221010.1021/acsapm.4c02210","DOIUrl":null,"url":null,"abstract":"<p >Compositing metal organic framework (MOF) powder with a polymer substrate is an effective way to obtain an efficient gas separation membrane. However, the weak polymer–filler interaction usually leads to the formation of nonselective cracks in the composite material. Here, we report a MOF–polymer composite membrane with a continuous and dense MOF layer, which was synthesized by magnetron sputtering and vapor phase growth. A thermally rearranged poly(benzoxazole) (TR-PBO) membrane was converted from a hydroxy-polyimide precursor by a thermal rearrangement reaction, which was used as the polymer support of the composite membrane. An ultrathin ZnO seed layer was deposited on the TR-PBO support by magnetron sputtering technology, and then it was converted to a ZIF-8 layer by vapor phase growth. Scanning electron microscopy results confirm the formation of a dense, flat, and continuous ZIF layer with a thickness of about 450–600 nm. The ZIF-8 nanoparticles are uniform in size and evenly distributed. Furthermore, the attached ZIF layer significantly improves the gas selectivity of the composite membrane, which should be attributed to the sieving effect of the unique pore structure of ZIF-8. The method of magnetron sputtering combined with vapor phase growth is effective for improving the selectivity of the gas separation membrane and reducing the aggregation of MOF particles, which opens up a way for the design of flat and ultrathin gas separation composite membranes.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c02210","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Compositing metal organic framework (MOF) powder with a polymer substrate is an effective way to obtain an efficient gas separation membrane. However, the weak polymer–filler interaction usually leads to the formation of nonselective cracks in the composite material. Here, we report a MOF–polymer composite membrane with a continuous and dense MOF layer, which was synthesized by magnetron sputtering and vapor phase growth. A thermally rearranged poly(benzoxazole) (TR-PBO) membrane was converted from a hydroxy-polyimide precursor by a thermal rearrangement reaction, which was used as the polymer support of the composite membrane. An ultrathin ZnO seed layer was deposited on the TR-PBO support by magnetron sputtering technology, and then it was converted to a ZIF-8 layer by vapor phase growth. Scanning electron microscopy results confirm the formation of a dense, flat, and continuous ZIF layer with a thickness of about 450–600 nm. The ZIF-8 nanoparticles are uniform in size and evenly distributed. Furthermore, the attached ZIF layer significantly improves the gas selectivity of the composite membrane, which should be attributed to the sieving effect of the unique pore structure of ZIF-8. The method of magnetron sputtering combined with vapor phase growth is effective for improving the selectivity of the gas separation membrane and reducing the aggregation of MOF particles, which opens up a way for the design of flat and ultrathin gas separation composite membranes.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.