Biodiesel synthesis from low cost biomass wastes and its cost assessment inducing process optimization

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials for Renewable and Sustainable Energy Pub Date : 2024-09-28 DOI:10.1007/s40243-024-00274-7
C. O. Okwelum, R. Nwadiolu, G. I. Okolotu, T. A. Balogun, T. F. Adepoju, J. S. Oboreh, S. C. Chiemeke, J. C. Oboreh, A. E. Essaghah, A. F. Ibimilua, A. Taiga, O. A. Efih
{"title":"Biodiesel synthesis from low cost biomass wastes and its cost assessment inducing process optimization","authors":"C. O. Okwelum,&nbsp;R. Nwadiolu,&nbsp;G. I. Okolotu,&nbsp;T. A. Balogun,&nbsp;T. F. Adepoju,&nbsp;J. S. Oboreh,&nbsp;S. C. Chiemeke,&nbsp;J. C. Oboreh,&nbsp;A. E. Essaghah,&nbsp;A. F. Ibimilua,&nbsp;A. Taiga,&nbsp;O. A. Efih","doi":"10.1007/s40243-024-00274-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study employed low-cost biomass wastes for the synthesis of biodiesel that is cost-effective and environmentally friendly. The major raw material (oil) was obtained by steam distillation (SD) from Croton heliotropiifolius Kunth leaf (CHKL) and was characterized for its aptness for biodiesel production. Dwarft green coconut husk ash (DGCHA) was used as a bio-adsorbent for acid value reduction of Croton heliotropiifolius Kunth leaves oil (CHKLO). A novel, highly potassium-based catalyst was derived from Karpuravalli banana peels (KBP), calcined, and characterized using TGA, ZETA, FTIR, SEM-EDX, XRF-FS, and BET analysis. Biodiesel was synthesized using a microwave-assisted method, characterized, and compared with the recommended standard. The catalytic strength of the calcined Karpuravalli banana peel powder (CKBPP) was tested using a reusability test, and the cost evaluation of production was estimated. Results showed that the CHKL was rich in oil (43% wt./wt.), and the oil is highly acidic (5.23 mg KOH/g oil). At high particle size, the dwarf green coconut husk ash (DGCHA) bagasse reduced the acid value to a minimum (1.4 mg KOH/g oil) at 3 days. The developed novel catalyst from CKBPP indicated high potassium-calcium contents for base transesterification. Process optimization indicated that the predicted response data of 95.285% (wt./wt.) at T<sub>1</sub> = 90 min, T<sub>2</sub> = 60 <sup>o</sup>C, T<sub>3</sub> = 4.5% (wt.), and T<sub>4</sub> = 9 (vol./vol.) was validated in triplicate, and the average data value of 95.10% (wt./wt.) was established. Dataset on the quality of biodiesel showed that the produced biodiesel properties were in line with recommended standards. Economic appraisal data showed that the cost of producing 20 L of CHKLOB (biodiesel) was $4.73 at 1,500 to $1. The study concluded that the production of biodiesel from waste can be cost-effective and environmentally friendly if wastes are harness.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00274-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-024-00274-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employed low-cost biomass wastes for the synthesis of biodiesel that is cost-effective and environmentally friendly. The major raw material (oil) was obtained by steam distillation (SD) from Croton heliotropiifolius Kunth leaf (CHKL) and was characterized for its aptness for biodiesel production. Dwarft green coconut husk ash (DGCHA) was used as a bio-adsorbent for acid value reduction of Croton heliotropiifolius Kunth leaves oil (CHKLO). A novel, highly potassium-based catalyst was derived from Karpuravalli banana peels (KBP), calcined, and characterized using TGA, ZETA, FTIR, SEM-EDX, XRF-FS, and BET analysis. Biodiesel was synthesized using a microwave-assisted method, characterized, and compared with the recommended standard. The catalytic strength of the calcined Karpuravalli banana peel powder (CKBPP) was tested using a reusability test, and the cost evaluation of production was estimated. Results showed that the CHKL was rich in oil (43% wt./wt.), and the oil is highly acidic (5.23 mg KOH/g oil). At high particle size, the dwarf green coconut husk ash (DGCHA) bagasse reduced the acid value to a minimum (1.4 mg KOH/g oil) at 3 days. The developed novel catalyst from CKBPP indicated high potassium-calcium contents for base transesterification. Process optimization indicated that the predicted response data of 95.285% (wt./wt.) at T1 = 90 min, T2 = 60 oC, T3 = 4.5% (wt.), and T4 = 9 (vol./vol.) was validated in triplicate, and the average data value of 95.10% (wt./wt.) was established. Dataset on the quality of biodiesel showed that the produced biodiesel properties were in line with recommended standards. Economic appraisal data showed that the cost of producing 20 L of CHKLOB (biodiesel) was $4.73 at 1,500 to $1. The study concluded that the production of biodiesel from waste can be cost-effective and environmentally friendly if wastes are harness.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用低成本生物质废料合成生物柴油及其成本评估诱导工艺优化
本研究利用低成本的生物质废物合成生物柴油,既经济又环保。主要原料(油)是通过蒸汽蒸馏(SD)从巴豆叶(CHKL)中获得的,并对其生产生物柴油的适用性进行了表征。矮绿椰壳灰 (DGCHA) 被用作生物吸附剂,用于降低 Croton heliotropiifolius Kunth 叶油 (CHKLO) 的酸值。从 Karpuravalli 香蕉皮 (KBP) 中提取了一种新型高钾催化剂,对其进行了煅烧,并使用 TGA、ZETA、FTIR、SEM-EDX、XRF-FS 和 BET 分析对其进行了表征。生物柴油采用微波辅助法合成,并进行了表征,与推荐标准进行了比较。利用可重复使用性试验测试了煅烧卡普拉瓦利香蕉皮粉(CKBPP)的催化强度,并估算了生产成本评估。结果表明,CHKL 含有丰富的油(43% wt./wt.),且油呈高酸性(5.23 mg KOH/g)。在高粒度条件下,矮绿椰壳灰(DGCHA)蔗渣可在 3 天内将酸值降至最低(1.4 mg KOH/g 油)。从 CKBPP 中开发出的新型催化剂在碱式酯交换反应中显示出较高的钾钙含量。工艺优化结果表明,在 T1 = 90 分钟、T2 = 60 oC、T3 = 4.5%(重量)和 T4 = 9(体积/体积)条件下,一式三份的预测反应数据为 95.285%(重量/重量),平均数据值为 95.10%(重量/重量)。生物柴油质量数据集显示,生产的生物柴油性能符合推荐标准。经济评估数据显示,以 1,500 美元兑 1 美元的价格计算,生产 20 升 CHKLOB(生物柴油)的成本为 4.73 美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
期刊最新文献
Biodiesel synthesis from low cost biomass wastes and its cost assessment inducing process optimization Sustainable construction: the use of cork material in the building industry Feasibility study on conversion of biowaste of lemon peel into carbon electrode for supercapacitor using ZnCl2 as an activating agent Performance of high sulfonated poly(ether ether ketone) improved with microcrystalline cellulose and 2,3-dialdehyde cellulose for proton exchange membranes Effect of scandium concentration on the performances of cantilever based AlN unimorph piezoelectric energy harvester with silicon nitride substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1