Mingjie Xin, Wui Seng Leong, Zilong Chen, Yu Wang, Shau-Yu Lan
{"title":"Fast quantum gas formation via electromagnetically induced transparency cooling","authors":"Mingjie Xin, Wui Seng Leong, Zilong Chen, Yu Wang, Shau-Yu Lan","doi":"10.1038/s41567-024-02677-9","DOIUrl":null,"url":null,"abstract":"<p>Ultracold quantum gases play a pivotal role in many-body physics, quantum sensing and quantum simulation. Over time, methods such as evaporative cooling in bulk ensembles and precision laser-cooling have been employed to effectively achieve quantum degeneracy in atomic gases. A simpler and more rapid way to form quantum gases would, thus, hold considerable promise in advancing the field. Here, we report the creation of a quantum gas by cooling individual rubidium atoms pinned in a three-dimensional optical lattice using electromagnetically induced transparency and adiabatic expansion. After just 10 ms of cooling, we verified the phase transition from a thermal to a quantum gas by adiabatically transferring the atoms to optical dipole traps. We observed the collapse of atoms in three-dimensional traps, a distinctive hallmark of a quantum gas with negative scattering length. Additionally, in a one-dimensional optical trap, we observed the emergence of a stable and strongly correlated quantum gas. Our results introduce a versatile and fast approach to achieving quantum degenerate gases with minimal time and resource requirements.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"18 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02677-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultracold quantum gases play a pivotal role in many-body physics, quantum sensing and quantum simulation. Over time, methods such as evaporative cooling in bulk ensembles and precision laser-cooling have been employed to effectively achieve quantum degeneracy in atomic gases. A simpler and more rapid way to form quantum gases would, thus, hold considerable promise in advancing the field. Here, we report the creation of a quantum gas by cooling individual rubidium atoms pinned in a three-dimensional optical lattice using electromagnetically induced transparency and adiabatic expansion. After just 10 ms of cooling, we verified the phase transition from a thermal to a quantum gas by adiabatically transferring the atoms to optical dipole traps. We observed the collapse of atoms in three-dimensional traps, a distinctive hallmark of a quantum gas with negative scattering length. Additionally, in a one-dimensional optical trap, we observed the emergence of a stable and strongly correlated quantum gas. Our results introduce a versatile and fast approach to achieving quantum degenerate gases with minimal time and resource requirements.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.