Kazuhiro Kuruma, Benjamin Pingault, Cleaven Chia, Michael Haas, Graham D. Joe, Daniel Rimoli Assumpcao, Sophie Weiyi Ding, Chang Jin, C. J. Xin, Matthew Yeh, Neil Sinclair, Marko Lončar
{"title":"Controlling interactions between high-frequency phonons and single quantum systems using phononic crystals","authors":"Kazuhiro Kuruma, Benjamin Pingault, Cleaven Chia, Michael Haas, Graham D. Joe, Daniel Rimoli Assumpcao, Sophie Weiyi Ding, Chang Jin, C. J. Xin, Matthew Yeh, Neil Sinclair, Marko Lončar","doi":"10.1038/s41567-024-02697-5","DOIUrl":null,"url":null,"abstract":"<p>The ability to control phonons in solids is key in many fields of quantum science, ranging from quantum information processing to sensing. Phonons often act as a source of noise and decoherence when solid-state quantum systems interact with the phonon bath of their host matrix. In this study, we demonstrate the ability to control the phononic local density of states of the host matrix using phononic crystals and measure its positive impact on single quantum systems. We design and fabricate diamond phononic crystals with features down to around 20 nm, resulting in a high-frequency complete phononic bandgap from 50 to 70 GHz. The engineered local density of states is probed using single silicon-vacancy colour centres embedded in the phononic crystals. We observe an 18-fold reduction in the phonon-induced orbital relaxation rate of the emitters compared to bulk, thereby demonstrating that the phononic crystal suppresses spontaneous single-phonon processes. Furthermore, we show that our approach can efficiently suppress single-phonon–emitter interactions up to 20 K, allowing the investigation of multi-phonon processes in the emitters. Our results represent an important step towards the realization of efficient phonon–emitter interfaces that can be used for quantum acoustodynamics and quantum phononic networks.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02697-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to control phonons in solids is key in many fields of quantum science, ranging from quantum information processing to sensing. Phonons often act as a source of noise and decoherence when solid-state quantum systems interact with the phonon bath of their host matrix. In this study, we demonstrate the ability to control the phononic local density of states of the host matrix using phononic crystals and measure its positive impact on single quantum systems. We design and fabricate diamond phononic crystals with features down to around 20 nm, resulting in a high-frequency complete phononic bandgap from 50 to 70 GHz. The engineered local density of states is probed using single silicon-vacancy colour centres embedded in the phononic crystals. We observe an 18-fold reduction in the phonon-induced orbital relaxation rate of the emitters compared to bulk, thereby demonstrating that the phononic crystal suppresses spontaneous single-phonon processes. Furthermore, we show that our approach can efficiently suppress single-phonon–emitter interactions up to 20 K, allowing the investigation of multi-phonon processes in the emitters. Our results represent an important step towards the realization of efficient phonon–emitter interfaces that can be used for quantum acoustodynamics and quantum phononic networks.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.