W. Griggs , A. Peasey , F. Schedin , Md.S. Anwar , B. Eggert , M.-A. Mawass , F. Kronast , H. Wende , R. Bali , T. Thomson
{"title":"Magnetic imaging of thermally switchable antiferromagnetic/ferromagnetic modulated thin films","authors":"W. Griggs , A. Peasey , F. Schedin , Md.S. Anwar , B. Eggert , M.-A. Mawass , F. Kronast , H. Wende , R. Bali , T. Thomson","doi":"10.1016/j.actamat.2024.120515","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoscale magnetic patterning can lead to the formation of a variety of spin textures, depending on the intrinsic properties of the material and the microstructure. Here we report on the spin textures formed in laterally patterned antiferromagnetic (AF)/ferromagnetic (FM) thin film stripes with a period of 200 nm (100 nm FM/100 nm AF). We make use of the AF to FM phase transition in FeRh thin films at ∼100 °C, thereby creating a nanoscale pattern that is thermally switchable between AF/FM stripes and uniformly FM. A combination of spin-resolved photoemission electron microscopy, magnetic force microscopy, and magnetometry measurements allow direct nanoscale observations of the stray magnetic fields emergent from the nanopattern as well as the underlying magnetisation. Our measurements reveal pinning centres resistant to temperature cycling that govern the modulated spin-texture as well as a sub-texture consisting of grain-driven nanoscale magnetisation structure directed out of the film plane. The nanoscale magnetic structure is thus strongly influenced by the film microstructure. Signatures of exchange bias are not observed, most likely due to the small contact area between the AF and FM regions, combined with the fact that the interfaces between the damaged and undamaged regions are likely to be highly diffuse owing to the lateral scattering of incoming ions. These results show that temperature controllable spin textures can be created in FeRh thin films which could find application in domain wall, microwave, or magnonic devices.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120515"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008644","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoscale magnetic patterning can lead to the formation of a variety of spin textures, depending on the intrinsic properties of the material and the microstructure. Here we report on the spin textures formed in laterally patterned antiferromagnetic (AF)/ferromagnetic (FM) thin film stripes with a period of 200 nm (100 nm FM/100 nm AF). We make use of the AF to FM phase transition in FeRh thin films at ∼100 °C, thereby creating a nanoscale pattern that is thermally switchable between AF/FM stripes and uniformly FM. A combination of spin-resolved photoemission electron microscopy, magnetic force microscopy, and magnetometry measurements allow direct nanoscale observations of the stray magnetic fields emergent from the nanopattern as well as the underlying magnetisation. Our measurements reveal pinning centres resistant to temperature cycling that govern the modulated spin-texture as well as a sub-texture consisting of grain-driven nanoscale magnetisation structure directed out of the film plane. The nanoscale magnetic structure is thus strongly influenced by the film microstructure. Signatures of exchange bias are not observed, most likely due to the small contact area between the AF and FM regions, combined with the fact that the interfaces between the damaged and undamaged regions are likely to be highly diffuse owing to the lateral scattering of incoming ions. These results show that temperature controllable spin textures can be created in FeRh thin films which could find application in domain wall, microwave, or magnonic devices.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.