{"title":"Ultrasensitive Biosensors Detecting m<sup>6</sup>A in Blood: Achieving Early Screening and Typing of Tumors.","authors":"Haiping Li, Xixiang Xie, Xiyu Liu, Pan Wu, Jian He, Faquan Lin, Liang Shi, Yong Huang","doi":"10.1021/acssensors.4c01875","DOIUrl":null,"url":null,"abstract":"<p><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modification is one of the most widespread RNA modifications in eukaryotes and is involved in cancer development and progression by regulating oncogene expression. Herein, a reticulated rolling circle amplification (RCA) cascade reaction was used to construct a novel electrochemical biosensor for ultrasensitive detection of m<sup>6</sup>A, employing ferrocene-tyramine (Fc-Tyr) molecules as electroactive probes. In this strategy, the RCA cascade reaction not only amplifies specific circular DNA in the designed template to reduce the binding with similar nucleic acid sequences but also generates a long ssDNA through multiple repetitions to capture a large number of electrochemical signal probes and achieve the amplification of electrochemical biosensing signals. The developed biosensor demonstrated high selectivity and sensitivity toward m<sup>6</sup>A in the range of 0.5 pM-150 nM, with a detection limit of 14.07 fM. Meanwhile, total RNA extracted from cell samples was analyzed for m<sup>6</sup>A expression levels using the developed biosensor and a commercial colorimetric immunoassay, the biosensor and immunoassay showed consistent results. In addition, m<sup>6</sup>A levels in clinical serum samples were assessed using the developed electrochemical biosensor, which showed that m<sup>6</sup>A expression was much lower in healthy individuals than in cancer patients, therefore the biosensor is promising for cancer typing. This study provides a new method for rapid and convenient tumor marker detection in clinical practice, as well as a new idea for sensitive detection of other biomolecules.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c01875","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
N6-methyladenosine (m6A) modification is one of the most widespread RNA modifications in eukaryotes and is involved in cancer development and progression by regulating oncogene expression. Herein, a reticulated rolling circle amplification (RCA) cascade reaction was used to construct a novel electrochemical biosensor for ultrasensitive detection of m6A, employing ferrocene-tyramine (Fc-Tyr) molecules as electroactive probes. In this strategy, the RCA cascade reaction not only amplifies specific circular DNA in the designed template to reduce the binding with similar nucleic acid sequences but also generates a long ssDNA through multiple repetitions to capture a large number of electrochemical signal probes and achieve the amplification of electrochemical biosensing signals. The developed biosensor demonstrated high selectivity and sensitivity toward m6A in the range of 0.5 pM-150 nM, with a detection limit of 14.07 fM. Meanwhile, total RNA extracted from cell samples was analyzed for m6A expression levels using the developed biosensor and a commercial colorimetric immunoassay, the biosensor and immunoassay showed consistent results. In addition, m6A levels in clinical serum samples were assessed using the developed electrochemical biosensor, which showed that m6A expression was much lower in healthy individuals than in cancer patients, therefore the biosensor is promising for cancer typing. This study provides a new method for rapid and convenient tumor marker detection in clinical practice, as well as a new idea for sensitive detection of other biomolecules.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.