Macrocycle Unidirectional Transport Along a Linear Molecule by a Two-Step Chemical Reaction Sequence.

IF 2.5 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY ChemistryOpen Pub Date : 2024-10-29 DOI:10.1002/open.202400244
Aldo C Catalán, Lucio Peña-Zarate, Ruy Cervantes, Alberto Vela, Jorge Tiburcio
{"title":"Macrocycle Unidirectional Transport Along a Linear Molecule by a Two-Step Chemical Reaction Sequence.","authors":"Aldo C Catalán, Lucio Peña-Zarate, Ruy Cervantes, Alberto Vela, Jorge Tiburcio","doi":"10.1002/open.202400244","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical systems displaying directional motions are relevant to the operation of artificial molecular machines. Herein we present the functioning of a molecule capable of transporting a cyclic species in a preferential direction. Our system is based on a linear, non-symmetric, positively charged molecule. This cation integrates into its structure two different reactive regions. On one side features a bulky ester group that can be exchanged by a smaller substituent; the other extreme contains an acid/base responsive moiety that plays a dual role, as part of the recognition motif and as a terminal group. In the acidic state, a dibenzo-24-crown-8 ether slides into the linear component attracted by the positively charged recognition site. It does this selectively through the extreme that contains the azepanium group, since the other side is sterically hindered. After base addition, intermolecular interactions are lost; however, the macrocycle is unable to escape from the linear component since the energy barrier to slide over the neutral azepane is too large. Therefore, a metastable mechanically interlocked molecule is formed. A second reaction, now on the ester functionality, exchanges the bulky mesityl for a methyl group, small enough to allow macrocycle dissociation, completing the directional transit of the ring along the track.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400244","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical systems displaying directional motions are relevant to the operation of artificial molecular machines. Herein we present the functioning of a molecule capable of transporting a cyclic species in a preferential direction. Our system is based on a linear, non-symmetric, positively charged molecule. This cation integrates into its structure two different reactive regions. On one side features a bulky ester group that can be exchanged by a smaller substituent; the other extreme contains an acid/base responsive moiety that plays a dual role, as part of the recognition motif and as a terminal group. In the acidic state, a dibenzo-24-crown-8 ether slides into the linear component attracted by the positively charged recognition site. It does this selectively through the extreme that contains the azepanium group, since the other side is sterically hindered. After base addition, intermolecular interactions are lost; however, the macrocycle is unable to escape from the linear component since the energy barrier to slide over the neutral azepane is too large. Therefore, a metastable mechanically interlocked molecule is formed. A second reaction, now on the ester functionality, exchanges the bulky mesityl for a methyl group, small enough to allow macrocycle dissociation, completing the directional transit of the ring along the track.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过两步化学反应序列实现线性分子的大循环单向传输
显示定向运动的化学系统与人工分子机器的运行息息相关。在此,我们介绍了一种分子的功能,这种分子能够以优先方向运输循环物种。我们的系统基于一个线性、非对称、带正电荷的分子。这种阳离子在其结构中整合了两个不同的反应区域。一侧是一个庞大的酯基,可以被一个较小的取代基交换;另一侧则包含一个酸/碱反应分子,扮演着双重角色,既是识别图案的一部分,又是终端基团。在酸性状态下,二苯并-24-冠醚在带正电的识别位点的吸引下滑入线性成分中。二苯并-24-冠醚选择性地通过含有氮杂钛基团的一端滑入线性成分,因为另一端受到立体阻碍。碱添加后,分子间的相互作用消失;但是,大环无法从线性成分中逃脱,因为滑过中性氮杂环庚烷的能量障碍太大。因此,形成了一个机械互锁的稳定分子。第二个反应是在酯官能团上进行的,它将大块的间苯二酚换成了一个甲基,这个甲基小到足以让大环解离,从而完成了环沿着轨道的定向转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemistryOpen
ChemistryOpen CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
4.80
自引率
4.30%
发文量
143
审稿时长
1 months
期刊介绍: ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.
期刊最新文献
Artificial Spidroin Nanogenerator-Based Articulus Wound Dressing. One-Pot Synthesis and Characterization of Magnetic α-Fe2O3/CuO/CuFe2O4 Nanocomposite for Multifunctional Therapeutic Applications. Protein Quakes in Redox Metalloenzymes: Clues to Molecular Enzyme Conductivity Triggered by Binding of Small Substrate Molecules. Rapid Synthesis of anti-1,3-Diamino-4-phenylbutan-2-ol Building Blocks via a Three-Component Oxyhomologation and a Two-Component Reducing System. Macrocycle Unidirectional Transport Along a Linear Molecule by a Two-Step Chemical Reaction Sequence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1