Harmonic analysis of phase-sensitive optical time-domain reflectometer

IF 2.2 3区 物理与天体物理 Q2 OPTICS Optics Communications Pub Date : 2024-10-21 DOI:10.1016/j.optcom.2024.131230
Mengmeng Chen , Zhigang Xiong , Fei Xu
{"title":"Harmonic analysis of phase-sensitive optical time-domain reflectometer","authors":"Mengmeng Chen ,&nbsp;Zhigang Xiong ,&nbsp;Fei Xu","doi":"10.1016/j.optcom.2024.131230","DOIUrl":null,"url":null,"abstract":"<div><div>This study innovatively proposes a method of using harmonics to mitigate the influence of fading noise in Phase-Sensitive Optical Time-Domain Reflectometer (Φ-OTDR). Numerical modeling was conducted to investigate the behavior of the Φ-OTDR. A section optical fiber is coiled around a PZT (piezoelectric transducer). By applying a signal to the PZT, it emulates an external vibration. The response of the simulated vibration was extracted using phase demodulation algorithm. In the response spectrum of the vibration, the fundamental frequency may be submerged because of the fading noise, causing the useful information to be obscured. However, the region impacted by fading noise in the fundamental frequency is unaffected in certain harmonic components. Thus, information from the harmonics can be used to compensate for the missing information in the fundamental frequency. By analyzing multiple harmonic components, the accuracy of vibration detection and localization can be improved. Experiment was performed to corroborate the findings, and the results demonstrated good consistency with the simulated data. Both the simulation and the experiment proved that considering harmonics can enhance the measurement accuracy of Φ-OTDR. This discovery provides new insights and methods for the application of Φ-OTDR.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"574 ","pages":"Article 131230"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824009672","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study innovatively proposes a method of using harmonics to mitigate the influence of fading noise in Phase-Sensitive Optical Time-Domain Reflectometer (Φ-OTDR). Numerical modeling was conducted to investigate the behavior of the Φ-OTDR. A section optical fiber is coiled around a PZT (piezoelectric transducer). By applying a signal to the PZT, it emulates an external vibration. The response of the simulated vibration was extracted using phase demodulation algorithm. In the response spectrum of the vibration, the fundamental frequency may be submerged because of the fading noise, causing the useful information to be obscured. However, the region impacted by fading noise in the fundamental frequency is unaffected in certain harmonic components. Thus, information from the harmonics can be used to compensate for the missing information in the fundamental frequency. By analyzing multiple harmonic components, the accuracy of vibration detection and localization can be improved. Experiment was performed to corroborate the findings, and the results demonstrated good consistency with the simulated data. Both the simulation and the experiment proved that considering harmonics can enhance the measurement accuracy of Φ-OTDR. This discovery provides new insights and methods for the application of Φ-OTDR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相敏光学时域反射仪的谐波分析
本研究创新性地提出了一种利用谐波减轻相敏光时域反射仪(Φ-OTDR)中衰减噪声影响的方法。为研究 Φ-OTDR 的行为,进行了数值建模。一段光纤盘绕在压电传感器(PZT)周围。通过向 PZT 施加信号,模拟外部振动。利用相位解调算法提取模拟振动的响应。在振动的响应频谱中,基频可能会因衰减噪声而被淹没,导致有用信息被掩盖。然而,基频中受衰减噪声影响的区域在某些谐波成分中却不受影响。因此,谐波信息可以用来弥补基频信息的缺失。通过分析多个谐波分量,可以提高振动检测和定位的准确性。为证实研究结果,我们进行了实验,结果表明与模拟数据十分吻合。模拟和实验都证明,考虑谐波可以提高 Φ-OTDR 的测量精度。这一发现为 Φ-OTDR 的应用提供了新的见解和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics Communications
Optics Communications 物理-光学
CiteScore
5.10
自引率
8.30%
发文量
681
审稿时长
38 days
期刊介绍: Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.
期刊最新文献
The study of capillary discharge Ne-like 46.9 nm laser with a 2.5 mm inner diameter capillary First real-time single-span 106-km field trial using commercial 130-Gbaud DP-QPSK 400 Gb/s backbone OTN transceivers over deployed multi-core fiber cable Optical light scattering to improve image classification via wavelength division multiplexing Frequency-modulated dual-pulse phase-sensitive optical time-domain reflectometry with direct detection Three-dimensional endoscopic imaging system based on micro-lithography mask structured light projection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1