JiaJun He, Huan Liu, HongJie Cao, YanLong Meng, YangHui Li, Juan Kang, Le Wang, Yi Li
{"title":"Optical light scattering to improve image classification via wavelength division multiplexing","authors":"JiaJun He, Huan Liu, HongJie Cao, YanLong Meng, YangHui Li, Juan Kang, Le Wang, Yi Li","doi":"10.1016/j.optcom.2024.131302","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning is constantly contributing significant progress in many areas while posing huge demands for computing resources. It has been demonstrated the feasibility of leveraging random light scattering to decrease the computational resource demands of image classification algorithms. However, optical devices in optical random scattering systems, such as cameras, constrain the bandwidth of the entire system. In this study, a high-speed scattering system based on wavelength division multiplexing (WDM) was proposed. By employing the high bandwidth semiconductor lasers and quadrant PIN detectors, this WDM scattering system achieves over a 1000-times increase in acquisition speed compared to the traditional camera-based spatial scattering system. Moreover, this WDM scattering system has been demonstrated to improve the classification accuracy for RC on nine datasets, including MNIST, Chest_X-ray, and Malaria, by 26.15%.</div></div>","PeriodicalId":19586,"journal":{"name":"Optics Communications","volume":"575 ","pages":"Article 131302"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030401824010393","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning is constantly contributing significant progress in many areas while posing huge demands for computing resources. It has been demonstrated the feasibility of leveraging random light scattering to decrease the computational resource demands of image classification algorithms. However, optical devices in optical random scattering systems, such as cameras, constrain the bandwidth of the entire system. In this study, a high-speed scattering system based on wavelength division multiplexing (WDM) was proposed. By employing the high bandwidth semiconductor lasers and quadrant PIN detectors, this WDM scattering system achieves over a 1000-times increase in acquisition speed compared to the traditional camera-based spatial scattering system. Moreover, this WDM scattering system has been demonstrated to improve the classification accuracy for RC on nine datasets, including MNIST, Chest_X-ray, and Malaria, by 26.15%.
期刊介绍:
Optics Communications invites original and timely contributions containing new results in various fields of optics and photonics. The journal considers theoretical and experimental research in areas ranging from the fundamental properties of light to technological applications. Topics covered include classical and quantum optics, optical physics and light-matter interactions, lasers, imaging, guided-wave optics and optical information processing. Manuscripts should offer clear evidence of novelty and significance. Papers concentrating on mathematical and computational issues, with limited connection to optics, are not suitable for publication in the Journal. Similarly, small technical advances, or papers concerned only with engineering applications or issues of materials science fall outside the journal scope.