Mingxiang He , Kexin He , Qingshan Huang , Hang Xiao , Haidong Zhang , Guan Li , Aqiang Chen
{"title":"Lightweight mask R-CNN for instance segmentation and particle physical property analysis in multiphase flow","authors":"Mingxiang He , Kexin He , Qingshan Huang , Hang Xiao , Haidong Zhang , Guan Li , Aqiang Chen","doi":"10.1016/j.powtec.2024.120366","DOIUrl":null,"url":null,"abstract":"<div><div>A lightweight Mask R-CNN instance segmentation model was developed here to analyze particle size and shape accurately and quickly. Firstly, a hybrid Depthwise Dilated Convolutional Network (DDNet) is proposed, and the feature pyramid layers and the shared convolutional layers of the region proposal network are simplified, reducing the model complexity while ensuring robust feature extraction capabilities. Then, segmentation accuracy is significantly improved without sacrificing computational speed and performance by introducing the Dice loss function and clustering algorithm. Experimental results show that the model parameters are significantly reduced by 49.46%, and the segmentation speed increases from 2.15 FPS (frames per second) to 5.88 FPS. Meanwhile, the segmentation accuracy (AP50) increased from 90.56% to 91.21%. In addition, it was proven that the particle size distribution and shape could be analyzed accurately and rapidly with the proposed model, providing essential information for multiphase flow process optimization and equipment design in industrial applications.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120366"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010106","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A lightweight Mask R-CNN instance segmentation model was developed here to analyze particle size and shape accurately and quickly. Firstly, a hybrid Depthwise Dilated Convolutional Network (DDNet) is proposed, and the feature pyramid layers and the shared convolutional layers of the region proposal network are simplified, reducing the model complexity while ensuring robust feature extraction capabilities. Then, segmentation accuracy is significantly improved without sacrificing computational speed and performance by introducing the Dice loss function and clustering algorithm. Experimental results show that the model parameters are significantly reduced by 49.46%, and the segmentation speed increases from 2.15 FPS (frames per second) to 5.88 FPS. Meanwhile, the segmentation accuracy (AP50) increased from 90.56% to 91.21%. In addition, it was proven that the particle size distribution and shape could be analyzed accurately and rapidly with the proposed model, providing essential information for multiphase flow process optimization and equipment design in industrial applications.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.