Architecture of a remelted layer with the nano-lamellar structure at the surface of FeB materials via laser remelting to resist liquid aluminum corrosion

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2024-10-21 DOI:10.1016/j.matchar.2024.114480
Gaopeng Xu , Ting Wu , Ruili Liu , Yunqian Zhen , Funian Han , Kui Wang , Hongbin Xie , Hao Wang , Haiyan Jiang , Wenjiang Ding
{"title":"Architecture of a remelted layer with the nano-lamellar structure at the surface of FeB materials via laser remelting to resist liquid aluminum corrosion","authors":"Gaopeng Xu ,&nbsp;Ting Wu ,&nbsp;Ruili Liu ,&nbsp;Yunqian Zhen ,&nbsp;Funian Han ,&nbsp;Kui Wang ,&nbsp;Hongbin Xie ,&nbsp;Hao Wang ,&nbsp;Haiyan Jiang ,&nbsp;Wenjiang Ding","doi":"10.1016/j.matchar.2024.114480","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a significant enhancement of corrosion resistance of Fe-B materials in liquid Al (750 °C), with a corrosion rate one order of magnitude lower than that of H13 die steel, has been achieved by constructing nano-lamellar structures in the matrix. Results indicate that the nano-lamellar structure can not only effectively obstruct the interdiffusion between the Al and Fe atoms, restricting the growth of corrosion layers, but also accommodate sufficient growth and thermal stresses, suppressing the spallation of corrosion products. Furthermore, the ceramic nanoparticles in-situ formed in the nano-lamellar structure can inhibit the inward diffusion of Al atoms, greatly enhancing the corrosion resistance of α-Fe matrix. Besides, they also provide a robust pinning effect on the corrosion interface, improving the adhesion strength of corrosion products with the matrix. The architecture of nano-lamellar structure with nanoparticles may provide a novel strategy against liquid Al corrosion and shed new light on the development of corrosion-resistant materials.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114480"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008611","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, a significant enhancement of corrosion resistance of Fe-B materials in liquid Al (750 °C), with a corrosion rate one order of magnitude lower than that of H13 die steel, has been achieved by constructing nano-lamellar structures in the matrix. Results indicate that the nano-lamellar structure can not only effectively obstruct the interdiffusion between the Al and Fe atoms, restricting the growth of corrosion layers, but also accommodate sufficient growth and thermal stresses, suppressing the spallation of corrosion products. Furthermore, the ceramic nanoparticles in-situ formed in the nano-lamellar structure can inhibit the inward diffusion of Al atoms, greatly enhancing the corrosion resistance of α-Fe matrix. Besides, they also provide a robust pinning effect on the corrosion interface, improving the adhesion strength of corrosion products with the matrix. The architecture of nano-lamellar structure with nanoparticles may provide a novel strategy against liquid Al corrosion and shed new light on the development of corrosion-resistant materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过激光重熔在 FeB 材料表面形成具有纳米层状结构的重熔层,以抵御液态铝腐蚀
在这项研究中,通过在基体中构建纳米层状结构,显著提高了铁-乙材料在液态铝(750 °C)中的耐腐蚀性,其腐蚀速率比 H13 模具钢低一个数量级。结果表明,纳米胶束结构不仅能有效阻挡铝原子和铁原子之间的相互扩散,限制腐蚀层的生长,还能容纳足够的生长应力和热应力,抑制腐蚀产物的剥落。此外,在纳米层状结构中原位形成的陶瓷纳米颗粒还能抑制铝原子的向内扩散,大大提高了 α-Fe 基体的耐腐蚀性。此外,它们还能在腐蚀界面上提供强大的钉扎效应,提高腐蚀产物与基体的粘附强度。纳米层状结构与纳米粒子的结构可为防止液态铝腐蚀提供一种新的策略,并为耐腐蚀材料的开发带来新的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Evolution of microstructures in laser additive manufactured HT-9 ferritic martensitic steel Enhanced mechanical properties of lightweight refractory high-entropy alloys at elevated temperatures via Si addition Effects of ZrC addition on the recrystallization behavior of ZrC-dispersion strengthened FeCrAl alloys Comprehensive analysis of beryllium content influence on secondary electron yield in CuBe alloys Direct observation of the evolution behavior of micro to nanoscale precipitates in austenitic heat-resistant steel via electron channeling contrast imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1