Architecture of a remelted layer with the nano-lamellar structure at the surface of FeB materials via laser remelting to resist liquid aluminum corrosion
Gaopeng Xu , Ting Wu , Ruili Liu , Yunqian Zhen , Funian Han , Kui Wang , Hongbin Xie , Hao Wang , Haiyan Jiang , Wenjiang Ding
{"title":"Architecture of a remelted layer with the nano-lamellar structure at the surface of FeB materials via laser remelting to resist liquid aluminum corrosion","authors":"Gaopeng Xu , Ting Wu , Ruili Liu , Yunqian Zhen , Funian Han , Kui Wang , Hongbin Xie , Hao Wang , Haiyan Jiang , Wenjiang Ding","doi":"10.1016/j.matchar.2024.114480","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a significant enhancement of corrosion resistance of Fe-B materials in liquid Al (750 °C), with a corrosion rate one order of magnitude lower than that of H13 die steel, has been achieved by constructing nano-lamellar structures in the matrix. Results indicate that the nano-lamellar structure can not only effectively obstruct the interdiffusion between the Al and Fe atoms, restricting the growth of corrosion layers, but also accommodate sufficient growth and thermal stresses, suppressing the spallation of corrosion products. Furthermore, the ceramic nanoparticles in-situ formed in the nano-lamellar structure can inhibit the inward diffusion of Al atoms, greatly enhancing the corrosion resistance of α-Fe matrix. Besides, they also provide a robust pinning effect on the corrosion interface, improving the adhesion strength of corrosion products with the matrix. The architecture of nano-lamellar structure with nanoparticles may provide a novel strategy against liquid Al corrosion and shed new light on the development of corrosion-resistant materials.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"218 ","pages":"Article 114480"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580324008611","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a significant enhancement of corrosion resistance of Fe-B materials in liquid Al (750 °C), with a corrosion rate one order of magnitude lower than that of H13 die steel, has been achieved by constructing nano-lamellar structures in the matrix. Results indicate that the nano-lamellar structure can not only effectively obstruct the interdiffusion between the Al and Fe atoms, restricting the growth of corrosion layers, but also accommodate sufficient growth and thermal stresses, suppressing the spallation of corrosion products. Furthermore, the ceramic nanoparticles in-situ formed in the nano-lamellar structure can inhibit the inward diffusion of Al atoms, greatly enhancing the corrosion resistance of α-Fe matrix. Besides, they also provide a robust pinning effect on the corrosion interface, improving the adhesion strength of corrosion products with the matrix. The architecture of nano-lamellar structure with nanoparticles may provide a novel strategy against liquid Al corrosion and shed new light on the development of corrosion-resistant materials.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.