Multi-objective optimization of automotive seat frames using machine learning

IF 4 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Advances in Engineering Software Pub Date : 2024-10-24 DOI:10.1016/j.advengsoft.2024.103797
Haifeng Chen, Ping Yu, Jiangqi Long
{"title":"Multi-objective optimization of automotive seat frames using machine learning","authors":"Haifeng Chen,&nbsp;Ping Yu,&nbsp;Jiangqi Long","doi":"10.1016/j.advengsoft.2024.103797","DOIUrl":null,"url":null,"abstract":"<div><div>The optimal design of automobile seats plays an important role in passenger safety in high-speed accidents. In order to enhance the accuracy of the prediction of the input variables and output response of the seat, a hybrid machine learning prediction model that combines the improved gray wolf optimizer (IGWO) and back propagation neural network (BPNN) has been proposed, and the prediction effect of the model was validated using the seat simulation data. Initially, based on the experimental data, finite element models were developed for eight typical working conditions of automobile seats and their accuracy was validated. Subsequently, the energy absorption to mass ratio method was employed to screen the design variables, resulting in the selection of 17 thickness variables and 15 material variables. Thereafter, the gray wolf optimizer (GWO) algorithm underwent enhancement through the incorporation of the dynamic leadership hierarchy (DLH) mechanism and the revision of the positional formula, yielding the IGWO algorithm. Following this, the IGWO algorithm was applied to optimize the hyperparameters of BPNN, culminating in the establishment of the IGWO-BPNN model. Ultimately, the seat multi-objective optimization design process was addressed using multi-objective gray wolf optimizer (MOGWO) to achieve the Pareto frontier, while the decision-making was conducted using the combined compromise solution (CoCoSo) method to determine the best trade-off solution. Furthermore, the effectiveness of the proposed optimal design method is evidenced by comparing the baseline design, simulation analysis, and optimal design methods. The results indicate that the optimized automotive seat frame achieves a reduction in cost by 20.7 % and mass by 22.9 %, simultaneously maintaining safety performance. Consequently, the proposed optimization design methodology is demonstrated to be highly effective for the multi-objective optimization design of automotive seat frames.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"199 ","pages":"Article 103797"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997824002047","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The optimal design of automobile seats plays an important role in passenger safety in high-speed accidents. In order to enhance the accuracy of the prediction of the input variables and output response of the seat, a hybrid machine learning prediction model that combines the improved gray wolf optimizer (IGWO) and back propagation neural network (BPNN) has been proposed, and the prediction effect of the model was validated using the seat simulation data. Initially, based on the experimental data, finite element models were developed for eight typical working conditions of automobile seats and their accuracy was validated. Subsequently, the energy absorption to mass ratio method was employed to screen the design variables, resulting in the selection of 17 thickness variables and 15 material variables. Thereafter, the gray wolf optimizer (GWO) algorithm underwent enhancement through the incorporation of the dynamic leadership hierarchy (DLH) mechanism and the revision of the positional formula, yielding the IGWO algorithm. Following this, the IGWO algorithm was applied to optimize the hyperparameters of BPNN, culminating in the establishment of the IGWO-BPNN model. Ultimately, the seat multi-objective optimization design process was addressed using multi-objective gray wolf optimizer (MOGWO) to achieve the Pareto frontier, while the decision-making was conducted using the combined compromise solution (CoCoSo) method to determine the best trade-off solution. Furthermore, the effectiveness of the proposed optimal design method is evidenced by comparing the baseline design, simulation analysis, and optimal design methods. The results indicate that the optimized automotive seat frame achieves a reduction in cost by 20.7 % and mass by 22.9 %, simultaneously maintaining safety performance. Consequently, the proposed optimization design methodology is demonstrated to be highly effective for the multi-objective optimization design of automotive seat frames.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习对汽车座椅框架进行多目标优化
汽车座椅的优化设计对高速事故中的乘客安全起着重要作用。为了提高座椅输入变量和输出响应的预测精度,提出了改进灰狼优化器(IGWO)和反向传播神经网络(BPNN)相结合的混合机器学习预测模型,并利用座椅仿真数据验证了模型的预测效果。首先,在实验数据的基础上,针对汽车座椅的八种典型工况建立了有限元模型,并验证了其准确性。随后,采用能量吸收与质量比的方法筛选设计变量,最终选择了 17 个厚度变量和 15 个材料变量。之后,灰狼优化器(GWO)算法通过纳入动态领导层次(DLH)机制和修改位置公式进行了改进,从而产生了 IGWO 算法。随后,IGWO 算法被用于优化 BPNN 的超参数,最终建立了 IGWO-BPNN 模型。最后,利用多目标灰狼优化器(MOGWO)解决了座椅多目标优化设计过程,以实现帕累托前沿,同时利用组合折衷方案(CoCoSo)方法进行决策,以确定最佳折衷方案。此外,通过比较基准设计、模拟分析和优化设计方法,证明了所提出的优化设计方法的有效性。结果表明,优化后的汽车座椅框架在保持安全性能的同时,成本降低了 20.7%,质量降低了 22.9%。因此,所提出的优化设计方法对汽车座椅框架的多目标优化设计非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Engineering Software
Advances in Engineering Software 工程技术-计算机:跨学科应用
CiteScore
7.70
自引率
4.20%
发文量
169
审稿时长
37 days
期刊介绍: The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving. The scope of the journal includes: • Innovative computational strategies and numerical algorithms for large-scale engineering problems • Analysis and simulation techniques and systems • Model and mesh generation • Control of the accuracy, stability and efficiency of computational process • Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing) • Advanced visualization techniques, virtual environments and prototyping • Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations • Application of object-oriented technology to engineering problems • Intelligent human computer interfaces • Design automation, multidisciplinary design and optimization • CAD, CAE and integrated process and product development systems • Quality and reliability.
期刊最新文献
Refined finite element analysis of helical wire ropes under multi-axial dynamic loading An engineering-oriented Shallow-water Hydro-Sediment-Morphodynamic model using the GPU-acceleration and the hybrid LTS/GMaTS method Dimensionality reduction of solution reconstruction methods for a four-point stencil Stress-constrained topology optimization of geometrically nonlinear continuum structures by using parallel computing strategy .A multi-objective search-based approach for position and orientation deviations in assemblies with multiple non-ideal surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1