Pub Date : 2024-11-30DOI: 10.1016/j.advengsoft.2024.103829
Pan Shi , Yao Chen , Tong Guo , Yongming Tu , Jian Feng
It is urgent to develop advanced materials with high strength, high toughness and good ductility for modern engineering structures. Graphene reinforced metal matrix nanocomposites exhibit significantly enhanced strength and toughness, but their ductility remains relatively low due to the inherent tensile brittleness of graphene. Inspired by the origami concept, we utilize the surface hydrogenation method to develop an armchair-like folded graphene (AFG) structure as reinforcement for metal matrix composites. Molecular dynamics simulations show that the AFG structure can simultaneously enhance the tensile strength, stiffness, ductility, and toughness of copper (Cu) matrix composites. Compared with pristine graphene/Cu nanocomposites, AFG/Cu nanocomposites exhibit better ductility and toughness, while maintaining comparable strength and stiffness. Furthermore, the mechanical properties of AFG/Cu nanocomposites can be tuned by altering the degree of AFG folding and the distances between adjacent hydrogenated zones. The strengthening and toughening mechanism is that mechanically strong AFG can effectively block dislocation propagation across the metal-graphene interface before it unfolds to fracture. Such mechanism can be extended to other 2D nanomaterials reinforced metal matrix nanocomposites, opening up an avenue for developing high-performance nanocomposites.
{"title":"Folded graphene reinforced metal matrix nanocomposites with comprehensively enhanced tensile mechanical properties","authors":"Pan Shi , Yao Chen , Tong Guo , Yongming Tu , Jian Feng","doi":"10.1016/j.advengsoft.2024.103829","DOIUrl":"10.1016/j.advengsoft.2024.103829","url":null,"abstract":"<div><div>It is urgent to develop advanced materials with high strength, high toughness and good ductility for modern engineering structures. Graphene reinforced metal matrix nanocomposites exhibit significantly enhanced strength and toughness, but their ductility remains relatively low due to the inherent tensile brittleness of graphene. Inspired by the origami concept, we utilize the surface hydrogenation method to develop an armchair-like folded graphene (AFG) structure as reinforcement for metal matrix composites. Molecular dynamics simulations show that the AFG structure can simultaneously enhance the tensile strength, stiffness, ductility, and toughness of copper (Cu) matrix composites. Compared with pristine graphene/Cu nanocomposites, AFG/Cu nanocomposites exhibit better ductility and toughness, while maintaining comparable strength and stiffness. Furthermore, the mechanical properties of AFG/Cu nanocomposites can be tuned by altering the degree of AFG folding and the distances between adjacent hydrogenated zones. The strengthening and toughening mechanism is that mechanically strong AFG can effectively block dislocation propagation across the metal-graphene interface before it unfolds to fracture. Such mechanism can be extended to other 2D nanomaterials reinforced metal matrix nanocomposites, opening up an avenue for developing high-performance nanocomposites.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103829"},"PeriodicalIF":4.0,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.advengsoft.2024.103828
Somnath Karmakar , Goutam Kuti , Amit Shaw
More and more complex Civil Engineering problems are being considered in computational mechanics with the invention of high-quality computing techniques. In addition, the computational cost and storage requirement for complex and or large structures have increased dramatically, leading to an increased interest in removing the difficulties using any form of parallel computing. The process of applying the preload for parallel computing to any unstable structures is called a stabilising process, such as the Dynamic Relaxation Method (DRM) is one. This method minimises the energy by a simple vector iteration technique, which ultimately leads the structure to a static equilibrium state. The present study aims to highlight the utility of the DRM in the stabilisation process for small structures like building frames and large and or complicated structures such as bridges before actual transient analysis. Therefore, the present manuscript discusses the computational cost, CPU runtime, multiple increases of mass and rigid body displacement of building frames and bridges. The DRM allows an explicit solver to conduct a dynamic analysis by increasing the damping until the kinetic energy drops to a proposed value. The simulation of the DRM starts to find the equilibrium state with minimal dynamic effect, which is required to apply at the beginning of the solution phase to obtain the initial stress and displacement field before the start of the actual analysis.
{"title":"Efficiency of the dynamic relaxation method in the stabilisation process of bridge and building frame","authors":"Somnath Karmakar , Goutam Kuti , Amit Shaw","doi":"10.1016/j.advengsoft.2024.103828","DOIUrl":"10.1016/j.advengsoft.2024.103828","url":null,"abstract":"<div><div>More and more complex Civil Engineering problems are being considered in computational mechanics with the invention of high-quality computing techniques. In addition, the computational cost and storage requirement for complex and or large structures have increased dramatically, leading to an increased interest in removing the difficulties using any form of parallel computing. The process of applying the preload for parallel computing to any unstable structures is called a stabilising process, such as the Dynamic Relaxation Method (DRM) is one. This method minimises the energy by a simple vector iteration technique, which ultimately leads the structure to a static equilibrium state. The present study aims to highlight the utility of the DRM in the stabilisation process for small structures like building frames and large and or complicated structures such as bridges before actual transient analysis. Therefore, the present manuscript discusses the computational cost, CPU runtime, multiple increases of mass and rigid body displacement of building frames and bridges. The DRM allows an explicit solver to conduct a dynamic analysis by increasing the damping until the kinetic energy drops to a proposed value. The simulation of the DRM starts to find the equilibrium state with minimal dynamic effect, which is required to apply at the beginning of the solution phase to obtain the initial stress and displacement field before the start of the actual analysis.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103828"},"PeriodicalIF":4.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1016/j.advengsoft.2024.103801
M. Hasan , S. Redonnet , D. Zhongmin
This study proposes a fast yet reliable optimization framework for the aerodynamic design of transonic aircraft wings. Combining Computational Fluid Dynamics (CFD) and Machine Learning (ML), the framework is successfully applied to the Common Research Model (CRM) benchmark aircraft proposed by NASA. The framework relies on a series of automated CFD simulations, from which no less than 160 planform variations of the CRM wing are assessed from an aerodynamic standpoint. This database is used to educate an ML surrogate model, for which two specific algorithms are explored, namely eXtreme Gradient Boosting (XGB) and Light Gradient Boosting Machine (LGBM). Once trained with 80 % of this database and tested with the remaining 20 %, the ML surrogates are employed to explore a larger design space, their optimum being then inferred using an optimization framework relying on a Multi-Objective Genetic Algorithm (MOGAO). Each ML-based optimal planform is then simulated through CFD to confirm its aerodynamic merits, which are then compared against those of a conventional, fully CFD-based optimization. The comparison is very favourable, the best ML-based optimal planform exhibiting similar performances as its CFD-optimized counterpart (e.g. a 14 % higher lift-to-drag ratio) for only half of the CPU cost. Overall, this study demonstrates the potential of ML-based methods for optimizing aircraft wings, thereby paving the way to the adoption of more disruptive, data-driven aircraft design paradigms.
本研究为跨音速飞机机翼的气动设计提出了一个快速而可靠的优化框架。结合计算流体动力学(CFD)和机器学习(ML),该框架成功应用于美国国家航空航天局(NASA)提出的通用研究模型(CRM)基准飞机。该框架依靠一系列自动 CFD 仿真,从空气动力学角度评估了 CRM 机翼的不少于 160 种平面形状变化。该数据库用于培养 ML 代理模型,并为此探索了两种特定算法,即极端梯度提升算法 (XGB) 和轻梯度提升机 (LGBM)。在使用该数据库的 80% 进行训练并使用剩余的 20% 进行测试后,将使用 ML 代理来探索更大的设计空间,然后使用依赖于多目标遗传算法 (MOGAO) 的优化框架来推断其最佳值。然后,通过 CFD 对每个基于 ML 的优化方案进行模拟,以确认其气动性能,并将其与传统的、完全基于 CFD 的优化方案进行比较。比较结果非常有利,基于 ML 的最佳方案与基于 CFD 优化的方案表现出相似的性能(例如,升阻比提高了 14%),而 CPU 成本只有后者的一半。总之,这项研究证明了基于 ML 的方法在优化飞机机翼方面的潜力,从而为采用更具颠覆性的数据驱动飞机设计模式铺平了道路。
{"title":"Aerodynamic optimization of aircraft wings using machine learning","authors":"M. Hasan , S. Redonnet , D. Zhongmin","doi":"10.1016/j.advengsoft.2024.103801","DOIUrl":"10.1016/j.advengsoft.2024.103801","url":null,"abstract":"<div><div>This study proposes a fast yet reliable optimization framework for the aerodynamic design of transonic aircraft wings. Combining Computational Fluid Dynamics (CFD) and Machine Learning (ML), the framework is successfully applied to the Common Research Model (CRM) benchmark aircraft proposed by NASA. The framework relies on a series of automated CFD simulations, from which no less than 160 planform variations of the CRM wing are assessed from an aerodynamic standpoint. This database is used to educate an ML surrogate model, for which two specific algorithms are explored, namely eXtreme Gradient Boosting (XGB) and Light Gradient Boosting Machine (LGBM). Once trained with 80 % of this database and tested with the remaining 20 %, the ML surrogates are employed to explore a larger design space, their optimum being then inferred using an optimization framework relying on a Multi-Objective Genetic Algorithm (MOGAO). Each ML-based optimal planform is then simulated through CFD to confirm its aerodynamic merits, which are then compared against those of a conventional, fully CFD-based optimization. The comparison is very favourable, the best ML-based optimal planform exhibiting similar performances as its CFD-optimized counterpart (e.g. a 14 % higher lift-to-drag ratio) for only half of the CPU cost. Overall, this study demonstrates the potential of ML-based methods for optimizing aircraft wings, thereby paving the way to the adoption of more disruptive, data-driven aircraft design paradigms.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103801"},"PeriodicalIF":4.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1016/j.advengsoft.2024.103826
Xiaoyang He , Zhengyang Chen , Qiangqiang Wu , Heng Lin , Yiqiang Xiang
The transverse and vertical layouts of tendons within prestressed concrete (PC) box girders induce complex mechanical behaviors that necessitate precise evaluation for effective structural design. However, existing investigations often overlook the impact of tendon transverse layout. To address this gap, an improved beam element, designated as B12TS, is developed for shear deformation and shear lag analyses of PC box girders under prestressing effects. The element integrates the tendon transverse layout through non-uniform longitudinal displacements of the tendons modeled as a series of piecewise linear segments. The prestressing forces are converted into equivalent nodal forces acting on the elements. The element shape functions are derived from the homogeneous solutions to the relevant differential equations. Comparative analyses involving various beam element models, available experimental data, and three-dimensional (3D) finite element simulations demonstrate that the B12TS element model significantly enhances the accuracy and efficiency of predicting both deflections and stress distributions. Furthermore, the effects of prestressing on the flange and web tendons of typical PC box beams are examined to quantify the impacts of shear lag, shear deformation, and tendon transverse layout. The findings reveal that the transverse layout of the flange tendons remarkably influences both the magnitude and distribution shape of normal stresses, particularly near anchorage locations. Consequently, the B12TS element model proves to be a valuable analysis tool for designing prismatic and non-prismatic PC box girder bridges with various tendon layouts.
预应力混凝土(PC)箱梁中的筋的横向和纵向布置会产生复杂的力学行为,需要对其进行精确评估,以便进行有效的结构设计。然而,现有的研究往往忽略了筋横向布置的影响。为了弥补这一缺陷,我们开发了一种改进的梁元素(命名为 B12TS),用于分析预应力效应下 PC 箱梁的剪切变形和剪切滞后。该元素通过将筋的非均匀纵向位移建模为一系列片断线性段,从而整合了筋的横向布局。预应力被转换为作用在元素上的等效节点力。元件形状函数由相关微分方程的均质解导出。涉及各种梁元素模型、现有实验数据和三维(3D)有限元模拟的比较分析表明,B12TS 元素模型显著提高了预测挠度和应力分布的精度和效率。此外,还研究了预应力对典型 PC 箱梁翼缘和腹板筋的影响,以量化剪力滞后、剪切变形和筋横向布置的影响。研究结果表明,翼缘筋的横向布置对法向应力的大小和分布形状都有显著影响,尤其是在锚固位置附近。因此,B12TS 元素模型被证明是设计具有各种肌腱布局的棱柱式和非棱柱式 PC 箱梁桥的重要分析工具。
{"title":"Shear lag and shear deformation in box girders considering tendon transverse layout by improved beam element model","authors":"Xiaoyang He , Zhengyang Chen , Qiangqiang Wu , Heng Lin , Yiqiang Xiang","doi":"10.1016/j.advengsoft.2024.103826","DOIUrl":"10.1016/j.advengsoft.2024.103826","url":null,"abstract":"<div><div>The transverse and vertical layouts of tendons within prestressed concrete (PC) box girders induce complex mechanical behaviors that necessitate precise evaluation for effective structural design. However, existing investigations often overlook the impact of tendon transverse layout. To address this gap, an improved beam element, designated as B12TS, is developed for shear deformation and shear lag analyses of PC box girders under prestressing effects. The element integrates the tendon transverse layout through non-uniform longitudinal displacements of the tendons modeled as a series of piecewise linear segments. The prestressing forces are converted into equivalent nodal forces acting on the elements. The element shape functions are derived from the homogeneous solutions to the relevant differential equations. Comparative analyses involving various beam element models, available experimental data, and three-dimensional (3D) finite element simulations demonstrate that the B12TS element model significantly enhances the accuracy and efficiency of predicting both deflections and stress distributions. Furthermore, the effects of prestressing on the flange and web tendons of typical PC box beams are examined to quantify the impacts of shear lag, shear deformation, and tendon transverse layout. The findings reveal that the transverse layout of the flange tendons remarkably influences both the magnitude and distribution shape of normal stresses, particularly near anchorage locations. Consequently, the B12TS element model proves to be a valuable analysis tool for designing prismatic and non-prismatic PC box girder bridges with various tendon layouts.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103826"},"PeriodicalIF":4.0,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-20DOI: 10.1016/j.advengsoft.2024.103825
V. Tomei, E. Grande, M. Imbimbo
The reuse of structural components from decommissioned structures is gaining traction among researchers and industry professionals. This approach offers significant advantages, including reduced costs and a smaller environmental footprint, by incorporating reclaimed elements from dismantled structures into the design of new ones. Steel elements are particularly well-suited to this purpose because they preserve their mechanical properties over time. Nevertheless, integrating reused members into the structure of a gridshell introduces complexities into the design process, as it adds additional parameters related to the characteristics of the reused members themselves, such as cross-section, length, and material. Therefore, optimizing gridshell structures with reused members necessitates analyzing solutions based on the placement of the reused members within the grid, as well as considering grid configurations that accommodate the characteristics of the reused members.
This paper presents a novel approach for optimizing steel gridshells that integrates reclaimed members into the structure. The approach effectively combines a geometry and a size optimization technique through a unique process using genetic algorithms. Applied to a case study derived from the literature and considering different scenarios of reused elements, the approach is also compared to a manual design approach. The results and comparisons demonstrate the proposed approach's capability to provide lighter solutions, leading to lower costs and a reduced environmental impact, the last highlighted by the evaluation of the greenhouse gas emission for each case.
{"title":"A novel optimization approach for the design of environmentally efficient gridshells with reclaimed steel members","authors":"V. Tomei, E. Grande, M. Imbimbo","doi":"10.1016/j.advengsoft.2024.103825","DOIUrl":"10.1016/j.advengsoft.2024.103825","url":null,"abstract":"<div><div>The reuse of structural components from decommissioned structures is gaining traction among researchers and industry professionals. This approach offers significant advantages, including reduced costs and a smaller environmental footprint, by incorporating reclaimed elements from dismantled structures into the design of new ones. Steel elements are particularly well-suited to this purpose because they preserve their mechanical properties over time. Nevertheless, integrating reused members into the structure of a gridshell introduces complexities into the design process, as it adds additional parameters related to the characteristics of the reused members themselves, such as cross-section, length, and material. Therefore, optimizing gridshell structures with reused members necessitates analyzing solutions based on the placement of the reused members within the grid, as well as considering grid configurations that accommodate the characteristics of the reused members.</div><div>This paper presents a novel approach for optimizing steel gridshells that integrates reclaimed members into the structure. The approach effectively combines a geometry and a size optimization technique through a unique process using genetic algorithms. Applied to a case study derived from the literature and considering different scenarios of reused elements, the approach is also compared to a manual design approach. The results and comparisons demonstrate the proposed approach's capability to provide lighter solutions, leading to lower costs and a reduced environmental impact, the last highlighted by the evaluation of the greenhouse gas emission for each case.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103825"},"PeriodicalIF":4.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.advengsoft.2024.103822
Markéta Faltýnková, Ondřej Meca, Tomáš Brzobohatý, Lubomír Říha, Milan Jaroš, Petr Strakoš
High-fidelity CFD simulations can easily generate terabytes to petabytes of resulting data. Post-processing of such data is not an easy task. It holds especially for volume rendering, one of the most illustrative but computationally intensive post-processing techniques.
This paper presents an HPC-ready workflow for post-processing large-scale CFD data computed on unstructured meshes by volume rendering using matured visual effects tools. The workflow consists of five steps: (1) parallel loading of unstructured data into memory, (2) data load-balancing among available resources, (3) re-sampling unstructured data into a regular grid (voxelisation), (4) storing data to OpenVDB format, and (5) final high-quality volume rendering of the (possibly sparse) regular grid in Blender. The workflow is based on open-source libraries, where we have improved all these steps to build an effective and robust approach. Due to parallel loading and appropriate load balancing, our workflow (a) allows loading sequential databases that do not fit into the memory of a single node and (b) significantly outperforms current scientific visualisation tools in voxelisation scalability. Moreover, due to the connection to professional visual effects tools such as Blender, interactive or photo-realistic volume rendering by path tracing, which includes global illumination effects, is allowed.
With the workflow, it is possible to re-sample hundreds of time steps on an unstructured mesh with 1 billion cells (tens of TB of data) to a sparse regular grid with a density of 11 billion voxels and prepare data for interactive visualisation in just a few minutes using thousands of CPU cores.
{"title":"Workflow for high-quality visualisation of large-scale CFD simulations by volume rendering","authors":"Markéta Faltýnková, Ondřej Meca, Tomáš Brzobohatý, Lubomír Říha, Milan Jaroš, Petr Strakoš","doi":"10.1016/j.advengsoft.2024.103822","DOIUrl":"10.1016/j.advengsoft.2024.103822","url":null,"abstract":"<div><div>High-fidelity CFD simulations can easily generate terabytes to petabytes of resulting data. Post-processing of such data is not an easy task. It holds especially for volume rendering, one of the most illustrative but computationally intensive post-processing techniques.</div><div>This paper presents an HPC-ready workflow for post-processing large-scale CFD data computed on unstructured meshes by volume rendering using matured visual effects tools. The workflow consists of five steps: (1) parallel loading of unstructured data into memory, (2) data load-balancing among available resources, (3) re-sampling unstructured data into a regular grid (voxelisation), (4) storing data to OpenVDB format, and (5) final high-quality volume rendering of the (possibly sparse) regular grid in Blender. The workflow is based on open-source libraries, where we have improved all these steps to build an effective and robust approach. Due to parallel loading and appropriate load balancing, our workflow (a) allows loading sequential databases that do not fit into the memory of a single node and (b) significantly outperforms current scientific visualisation tools in voxelisation scalability. Moreover, due to the connection to professional visual effects tools such as Blender, interactive or photo-realistic volume rendering by path tracing, which includes global illumination effects, is allowed.</div><div>With the workflow, it is possible to re-sample hundreds of time steps on an unstructured mesh with 1 billion cells (tens of TB of data) to a sparse regular grid with a density of 11 billion voxels and prepare data for interactive visualisation in just a few minutes using thousands of CPU cores.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103822"},"PeriodicalIF":4.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-18DOI: 10.1016/j.advengsoft.2024.103824
Vuong Nguyen Van Do , Thang N. Dao , Chin-Hyung Lee
In this paper, a new three-dimensional (3D) numerical solution method for analyzing the nonlinear flexural response behaviour of laminated graphene platelet (GPL)-reinforced composite plates in thermal or thermomechanical loading is presented. For this purpose, a 3D isogeometric finite element formulation for the thermal and thermomechanical bending analysis is established based on 3D elasticity theory into which the Green-Lagrange strain tensor is incorporated to take the geometric nonlinearity into account, and the 3D steady conduction of heat is considered as the thermal environment to reflect the real circumstance. The 3D isogeometric approach proposed, by replicating multiple benchmark problems and comparing the predicted results to the existing solutions, is evidenced to successfully perform the thermal and thermomechanical bending analysis. Following the verification, nonlinear flexure of the nanocomposite plates under the heat conduction in combination with and without mechanical loading is scrutinized by employing various parameters such as the weight fraction and arrangement scheme of the nanofillers, the plate configuration and the constraint condition. Two types of the GPL-embedded composite plates, i.e., rectangular pristine plate and rectangular plate with cutout are taken into account. Results demonstrate that the proposed IGA method can be used as an accurate and effective numerical tool for analyzing the nonlinear thermoelastic bending behaviour of the intact and perforated GPL-reinforced composite plates and that spreading GPLs near the opposite side of the surface on which the heating is imposed is the most favorable scheme of enhancing the thermal bending resistance.
本文介绍了一种新的三维(3D)数值求解方法,用于分析层状石墨烯平板(GPL)增强复合板在热或热机械载荷下的非线性弯曲响应行为。为此,以三维弹性理论为基础,建立了用于热和热机械弯曲分析的三维等几何有限元公式,并将格林-拉格朗日应变张量纳入其中以考虑几何非线性,同时将三维稳定热传导视为热环境以反映真实情况。通过复制多个基准问题并将预测结果与现有解决方案进行比较,证明所提出的三维等几何方法能够成功进行热和热力学弯曲分析。验证之后,通过采用各种参数,如纳米填料的重量分数和排列方案、板配置和约束条件,仔细研究了纳米复合材料板在热传导和无机械载荷情况下的非线性弯曲。考虑了两种类型的 GPL 嵌入复合板,即矩形原始板和带切口的矩形板。结果表明,所提出的 IGA 方法可作为一种精确有效的数值工具,用于分析完整的和穿孔的 GPL 增强复合板的非线性热弹性弯曲行为,而且在施加加热的表面反面附近铺设 GPL 是增强热弯曲阻力的最有利方案。
{"title":"Three-dimensional isogeometric finite element solution method for the nonlinear thermal and thermomechanical bending analysis of laminated graphene platelet-reinforced composite plates with and without cutout","authors":"Vuong Nguyen Van Do , Thang N. Dao , Chin-Hyung Lee","doi":"10.1016/j.advengsoft.2024.103824","DOIUrl":"10.1016/j.advengsoft.2024.103824","url":null,"abstract":"<div><div>In this paper, a new three-dimensional (3D) numerical solution method for analyzing the nonlinear flexural response behaviour of laminated graphene platelet (GPL)-reinforced composite plates in thermal or thermomechanical loading is presented. For this purpose, a 3D isogeometric finite element formulation for the thermal and thermomechanical bending analysis is established based on 3D elasticity theory into which the Green-Lagrange strain tensor is incorporated to take the geometric nonlinearity into account, and the 3D steady conduction of heat is considered as the thermal environment to reflect the real circumstance. The 3D isogeometric approach proposed, by replicating multiple benchmark problems and comparing the predicted results to the existing solutions, is evidenced to successfully perform the thermal and thermomechanical bending analysis. Following the verification, nonlinear flexure of the nanocomposite plates under the heat conduction in combination with and without mechanical loading is scrutinized by employing various parameters such as the weight fraction and arrangement scheme of the nanofillers, the plate configuration and the constraint condition. Two types of the GPL-embedded composite plates, i.e., rectangular pristine plate and rectangular plate with cutout are taken into account. Results demonstrate that the proposed IGA method can be used as an accurate and effective numerical tool for analyzing the nonlinear thermoelastic bending behaviour of the intact and perforated GPL-reinforced composite plates and that spreading GPLs near the opposite side of the surface on which the heating is imposed is the most favorable scheme of enhancing the thermal bending resistance.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103824"},"PeriodicalIF":4.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.advengsoft.2024.103823
Huile Li , Huan Yan
Due to high tensile strength, light weight, and good flexibility, the steel wire ropes with helical structures are widely used as crucial load-bearing components in various industrial sectors such as civil engineering. They are subjected to significant vibrations caused by multi-axial dynamic loading during the service period which may eventually result in premature failures. This paper presents a refined finite element analysis method for helical wire ropes under multi-axial dynamic loading. The proposed method employs multi-directional dynamic excitations extracted from the analysis of the overall engineering systems to consider actual loading conditions. Refined finite element analysis of the entire steel wire rope under multi-axial dynamic loading is carried out for the first time based on the global-local finite element model to obtain detailed mechanical responses. The critical rope segment is represented by solid elements taking into account the helical structure, inter-wire frictional contact, slippage, and material nonlinearity, among others, and non-critical segments are simulated with beam elements in the established global-local model, which can achieve good balance between computational efficiency and accuracy. The refined finite element modeling strategy is validated via three numerical examples with comparisons against the results in the literature. The proposed method is illustrated on the suspender cable used in suspension bridges. Detailed mechanical responses and their influencing factors are examined to acquire new insights into the dynamic mechanical characteristics of typical double-helical wire rope. The present work can provide an efficient tool for the assessment of in-service engineering systems containing helical wire ropes.
{"title":"Refined finite element analysis of helical wire ropes under multi-axial dynamic loading","authors":"Huile Li , Huan Yan","doi":"10.1016/j.advengsoft.2024.103823","DOIUrl":"10.1016/j.advengsoft.2024.103823","url":null,"abstract":"<div><div>Due to high tensile strength, light weight, and good flexibility, the steel wire ropes with helical structures are widely used as crucial load-bearing components in various industrial sectors such as civil engineering. They are subjected to significant vibrations caused by multi-axial dynamic loading during the service period which may eventually result in premature failures. This paper presents a refined finite element analysis method for helical wire ropes under multi-axial dynamic loading. The proposed method employs multi-directional dynamic excitations extracted from the analysis of the overall engineering systems to consider actual loading conditions. Refined finite element analysis of the entire steel wire rope under multi-axial dynamic loading is carried out for the first time based on the global-local finite element model to obtain detailed mechanical responses. The critical rope segment is represented by solid elements taking into account the helical structure, inter-wire frictional contact, slippage, and material nonlinearity, among others, and non-critical segments are simulated with beam elements in the established global-local model, which can achieve good balance between computational efficiency and accuracy. The refined finite element modeling strategy is validated via three numerical examples with comparisons against the results in the literature. The proposed method is illustrated on the suspender cable used in suspension bridges. Detailed mechanical responses and their influencing factors are examined to acquire new insights into the dynamic mechanical characteristics of typical double-helical wire rope. The present work can provide an efficient tool for the assessment of in-service engineering systems containing helical wire ropes.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103823"},"PeriodicalIF":4.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-16DOI: 10.1016/j.advengsoft.2024.103821
Zixiong Zhao , Peng Hu , Wei Li , Zhixian Cao , Youwei Li
Engineering applications of finite volume Shallow-water Hydro-Sediment-Morphodynamic models (SHSM) have faced limitations due to their high computational demands arising from either extremely large amounts of computational cells or extremely small time steps at some regions and simultaneously the adoption of the globally minimum time step. To this end, we present an engineering-oriented modeling framework by (1) using the GPU-acceleration that overcomes the challenge of extremely large amounts of computational cells and (2) using a hybrid local-time-stepping/global maximum time step (LTS/GMaTS) strategy that mitigates the extremely small local time steps necessitated by locally-refined meshes or non-uniformity of flow conditions. The GPU parallel algorithm is tailored to fully leverage the computational power of GPU, optimizing numerical structure, kernel functions and memory usage, all in conjunction with the hybrid LTS/GMaTS implementation. We demonstrate its computational efficiency by simulating one experimental dam-break flow and a field-scale case in the Xinjiu waterway, Middle Yangtze River. The results show that the scheme performs well in terms of accuracy, efficiency, and robustness in reproducing real-world hydro-sediment-morphological evolution.
{"title":"An engineering-oriented Shallow-water Hydro-Sediment-Morphodynamic model using the GPU-acceleration and the hybrid LTS/GMaTS method","authors":"Zixiong Zhao , Peng Hu , Wei Li , Zhixian Cao , Youwei Li","doi":"10.1016/j.advengsoft.2024.103821","DOIUrl":"10.1016/j.advengsoft.2024.103821","url":null,"abstract":"<div><div>Engineering applications of finite volume Shallow-water Hydro-Sediment-Morphodynamic models (SHSM) have faced limitations due to their high computational demands arising from either extremely large amounts of computational cells or extremely small time steps at some regions and simultaneously the adoption of the globally minimum time step. To this end, we present an engineering-oriented modeling framework by (1) using the GPU-acceleration that overcomes the challenge of extremely large amounts of computational cells and (2) using a hybrid local-time-stepping/global maximum time step (LTS/GMaTS) strategy that mitigates the extremely small local time steps necessitated by locally-refined meshes or non-uniformity of flow conditions. The GPU parallel algorithm is tailored to fully leverage the computational power of GPU, optimizing numerical structure, kernel functions and memory usage, all in conjunction with the hybrid LTS/GMaTS implementation. We demonstrate its computational efficiency by simulating one experimental dam-break flow and a field-scale case in the Xinjiu waterway, Middle Yangtze River. The results show that the scheme performs well in terms of accuracy, efficiency, and robustness in reproducing real-world hydro-sediment-morphological evolution.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"200 ","pages":"Article 103821"},"PeriodicalIF":4.0,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142652363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.advengsoft.2024.103804
Seongmun Jung, Seung-Yun Shin , Sang Lee
The development of reconstruction methods has faced considerable challenges due to their inherent high dimensionality. In the present study, an innovative dimensionality reduction method aimed at mitigating these challenges by normalizing flow variables is proposed. Through our investigation, we demonstrate that a reconstruction method, specifically designed for a four-point stencil that is compatible with unstructured meshes, can be effectively represented by six two-dimensional functions. This key insight enables us to devise a visualization technique utilizing a single contour plot for the reconstruction method. Additionally, we establish that a single data set can adequately represent the reconstruction method, facilitating solution reconstruction through data set interpolation. By carefully evaluating the interpolation error, a data set of reasonable size yields sufficiently small interpolation errors. Notably, we uncover the possibility of extracting reconstruction methods from a trained artificial neural network (ANN). To gauge the impact of accumulated interpolation errors on solution quality, we conduct comprehensive analyses on four benchmark problems. Our results demonstrate that with a data set of sufficient size, the accumulated interpolation error becomes negligible, rendering the solution reconstruction by interpolating the extracted data set both accurate and cost-effective. The implications of our findings hold substantial promise for enhancing the efficiency and efficacy of reconstruction methods.
{"title":"Dimensionality reduction of solution reconstruction methods for a four-point stencil","authors":"Seongmun Jung, Seung-Yun Shin , Sang Lee","doi":"10.1016/j.advengsoft.2024.103804","DOIUrl":"10.1016/j.advengsoft.2024.103804","url":null,"abstract":"<div><div>The development of reconstruction methods has faced considerable challenges due to their inherent high dimensionality. In the present study, an innovative dimensionality reduction method aimed at mitigating these challenges by normalizing flow variables is proposed. Through our investigation, we demonstrate that a reconstruction method, specifically designed for a four-point stencil that is compatible with unstructured meshes, can be effectively represented by six two-dimensional functions. This key insight enables us to devise a visualization technique utilizing a single contour plot for the reconstruction method. Additionally, we establish that a single data set can adequately represent the reconstruction method, facilitating solution reconstruction through data set interpolation. By carefully evaluating the interpolation error, a data set of reasonable size yields sufficiently small interpolation errors. Notably, we uncover the possibility of extracting reconstruction methods from a trained artificial neural network (ANN). To gauge the impact of accumulated interpolation errors on solution quality, we conduct comprehensive analyses on four benchmark problems. Our results demonstrate that with a data set of sufficient size, the accumulated interpolation error becomes negligible, rendering the solution reconstruction by interpolating the extracted data set both accurate and cost-effective. The implications of our findings hold substantial promise for enhancing the efficiency and efficacy of reconstruction methods.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"199 ","pages":"Article 103804"},"PeriodicalIF":4.0,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}