Analysis of the gas-solid two-phase flow characteristics and the impact of key structural parameters on the separation performance of medium-speed coal mills

IF 4 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Advances in Engineering Software Pub Date : 2025-02-26 DOI:10.1016/j.advengsoft.2025.103896
Hailiang Hu, Yiming Li, Hanguang Jin, Biaobiao Lin, Guiqiu Song
{"title":"Analysis of the gas-solid two-phase flow characteristics and the impact of key structural parameters on the separation performance of medium-speed coal mills","authors":"Hailiang Hu,&nbsp;Yiming Li,&nbsp;Hanguang Jin,&nbsp;Biaobiao Lin,&nbsp;Guiqiu Song","doi":"10.1016/j.advengsoft.2025.103896","DOIUrl":null,"url":null,"abstract":"<div><div>The EM-type medium-speed mill (EM mill) integrates the functions of crushing, conveying, drying, and separating. It is widely used for grinding coal powder and ores. The mill operates in a \"black box\" environment, where the internal conditions cannot be easily observed. Due to the limitations of the measurement technology and real-time monitoring, describing the complex particle motion within the mill is challenging. Furthermore, the mill has a complex structure, generating large eddies within the grinding chamber that are difficult to completely remove. This often results in non-compliant coal powder fineness and \"over-grinding\" phenomena, which significantly affect the production efficiency. This paper conducts numerical simulations using computational fluid dynamics (CFD) and powder classification methods, in order to study the particle motion characteristics and improve the internal flow field distribution of the mill. This allows to increase the particle transport and separation efficiency. These are then compared with experimental results, showing an error of less than 5 %, which demonstrates that the adopted model accurately predicts the flow characteristics and separation performance of the EM mill. Afterwards, the particle motion inside the mill is analyzed based on the coupling method of Fluent 2022R2 and EDEM 2022. Finally, the impacts of the height of the ash bucket cone and the number of separator blades on the internal flow field distribution and particle separation performance are studied. The obtained results show that the particle motion is significantly affected by the flow field. In addition, the increase of the number of separator blades results in reducing the vortex flow between them in a certain range, which significantly improves the coal powder fineness, at the expense of the high discharge of large particles. The reduction of the height of the ash bucket cone limits the generation of vortex flow in the secondary separation zone, which significantly increases the separation efficiency of the coal powder. This study provide valuable guidance for changing the ash bucket structure and adjusting the number of separator blades, and serves as a reference for improving the separation performance of particles and enhancing the internal flow field in EM mill.</div></div>","PeriodicalId":50866,"journal":{"name":"Advances in Engineering Software","volume":"204 ","pages":"Article 103896"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Software","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965997825000341","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The EM-type medium-speed mill (EM mill) integrates the functions of crushing, conveying, drying, and separating. It is widely used for grinding coal powder and ores. The mill operates in a "black box" environment, where the internal conditions cannot be easily observed. Due to the limitations of the measurement technology and real-time monitoring, describing the complex particle motion within the mill is challenging. Furthermore, the mill has a complex structure, generating large eddies within the grinding chamber that are difficult to completely remove. This often results in non-compliant coal powder fineness and "over-grinding" phenomena, which significantly affect the production efficiency. This paper conducts numerical simulations using computational fluid dynamics (CFD) and powder classification methods, in order to study the particle motion characteristics and improve the internal flow field distribution of the mill. This allows to increase the particle transport and separation efficiency. These are then compared with experimental results, showing an error of less than 5 %, which demonstrates that the adopted model accurately predicts the flow characteristics and separation performance of the EM mill. Afterwards, the particle motion inside the mill is analyzed based on the coupling method of Fluent 2022R2 and EDEM 2022. Finally, the impacts of the height of the ash bucket cone and the number of separator blades on the internal flow field distribution and particle separation performance are studied. The obtained results show that the particle motion is significantly affected by the flow field. In addition, the increase of the number of separator blades results in reducing the vortex flow between them in a certain range, which significantly improves the coal powder fineness, at the expense of the high discharge of large particles. The reduction of the height of the ash bucket cone limits the generation of vortex flow in the secondary separation zone, which significantly increases the separation efficiency of the coal powder. This study provide valuable guidance for changing the ash bucket structure and adjusting the number of separator blades, and serves as a reference for improving the separation performance of particles and enhancing the internal flow field in EM mill.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Engineering Software
Advances in Engineering Software 工程技术-计算机:跨学科应用
CiteScore
7.70
自引率
4.20%
发文量
169
审稿时长
37 days
期刊介绍: The objective of this journal is to communicate recent and projected advances in computer-based engineering techniques. The fields covered include mechanical, aerospace, civil and environmental engineering, with an emphasis on research and development leading to practical problem-solving. The scope of the journal includes: • Innovative computational strategies and numerical algorithms for large-scale engineering problems • Analysis and simulation techniques and systems • Model and mesh generation • Control of the accuracy, stability and efficiency of computational process • Exploitation of new computing environments (eg distributed hetergeneous and collaborative computing) • Advanced visualization techniques, virtual environments and prototyping • Applications of AI, knowledge-based systems, computational intelligence, including fuzzy logic, neural networks and evolutionary computations • Application of object-oriented technology to engineering problems • Intelligent human computer interfaces • Design automation, multidisciplinary design and optimization • CAD, CAE and integrated process and product development systems • Quality and reliability.
期刊最新文献
Numerical evaluation of an innovative hybrid seismic control system with amplified energy dissipation An automatic selective PDF table-extraction method for collecting materials data from literature A novel hybrid wavelet transform for detecting damages in laminated composite cylindrical panels Analysis of the gas-solid two-phase flow characteristics and the impact of key structural parameters on the separation performance of medium-speed coal mills Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1