Dake Wu , Zhangjie Yu , Xinfa Xiong , Ang Peng , Jian Deng , Deng’an Cai , Guangming Zhou , Xinwei Wang
{"title":"A homogenized constitutive model for 2D woven composites under finite deformation: Considering fiber reorientation","authors":"Dake Wu , Zhangjie Yu , Xinfa Xiong , Ang Peng , Jian Deng , Deng’an Cai , Guangming Zhou , Xinwei Wang","doi":"10.1016/j.compstruct.2024.118649","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) woven composites exhibit excellent mechanical properties along the fiber directions. The mechanical behaviors demonstrate nonlinearity in specific applications. Although plasticity methods can be applied to predict complex behaviors, however, fiber reorientation has been observed during finite deformation, indicating that the fiber directions are no longer along orthotropic material axes when the angle between fibers changes. The angular bisectors of two fiber directions can serve as the orthotropic material axes due to the rotational symmetries even in finite deformation scenarios. This study reports a homogenized nonlinear constitutive model based on the rotational symmetry axes, incorporating plasticity and fiber reorientation phenomena. The plasticity model contains a two-parameter flow potential and power function. Plastic deformations are computed using an explicit method. Fiber reorientation angles are computed both theoretically and numerically. The relationship between mechanical properties and fiber reorientation angles is studied using finite element method (FEM). Due to introduce of a novel approach to determining the strain and stress of 2D woven composites undergoing finite deformation, the proposed model should have potential in engineering predictions.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118649"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007773","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) woven composites exhibit excellent mechanical properties along the fiber directions. The mechanical behaviors demonstrate nonlinearity in specific applications. Although plasticity methods can be applied to predict complex behaviors, however, fiber reorientation has been observed during finite deformation, indicating that the fiber directions are no longer along orthotropic material axes when the angle between fibers changes. The angular bisectors of two fiber directions can serve as the orthotropic material axes due to the rotational symmetries even in finite deformation scenarios. This study reports a homogenized nonlinear constitutive model based on the rotational symmetry axes, incorporating plasticity and fiber reorientation phenomena. The plasticity model contains a two-parameter flow potential and power function. Plastic deformations are computed using an explicit method. Fiber reorientation angles are computed both theoretically and numerically. The relationship between mechanical properties and fiber reorientation angles is studied using finite element method (FEM). Due to introduce of a novel approach to determining the strain and stress of 2D woven composites undergoing finite deformation, the proposed model should have potential in engineering predictions.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.