A homogenized constitutive model for 2D woven composites under finite deformation: Considering fiber reorientation

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composite Structures Pub Date : 2024-10-19 DOI:10.1016/j.compstruct.2024.118649
Dake Wu , Zhangjie Yu , Xinfa Xiong , Ang Peng , Jian Deng , Deng’an Cai , Guangming Zhou , Xinwei Wang
{"title":"A homogenized constitutive model for 2D woven composites under finite deformation: Considering fiber reorientation","authors":"Dake Wu ,&nbsp;Zhangjie Yu ,&nbsp;Xinfa Xiong ,&nbsp;Ang Peng ,&nbsp;Jian Deng ,&nbsp;Deng’an Cai ,&nbsp;Guangming Zhou ,&nbsp;Xinwei Wang","doi":"10.1016/j.compstruct.2024.118649","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) woven composites exhibit excellent mechanical properties along the fiber directions. The mechanical behaviors demonstrate nonlinearity in specific applications. Although plasticity methods can be applied to predict complex behaviors, however, fiber reorientation has been observed during finite deformation, indicating that the fiber directions are no longer along orthotropic material axes when the angle between fibers changes. The angular bisectors of two fiber directions can serve as the orthotropic material axes due to the rotational symmetries even in finite deformation scenarios. This study reports a homogenized nonlinear constitutive model based on the rotational symmetry axes, incorporating plasticity and fiber reorientation phenomena. The plasticity model contains a two-parameter flow potential and power function. Plastic deformations are computed using an explicit method. Fiber reorientation angles are computed both theoretically and numerically. The relationship between mechanical properties and fiber reorientation angles is studied using finite element method (FEM). Due to introduce of a novel approach to determining the strain and stress of 2D woven composites undergoing finite deformation, the proposed model should have potential in engineering predictions.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118649"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007773","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) woven composites exhibit excellent mechanical properties along the fiber directions. The mechanical behaviors demonstrate nonlinearity in specific applications. Although plasticity methods can be applied to predict complex behaviors, however, fiber reorientation has been observed during finite deformation, indicating that the fiber directions are no longer along orthotropic material axes when the angle between fibers changes. The angular bisectors of two fiber directions can serve as the orthotropic material axes due to the rotational symmetries even in finite deformation scenarios. This study reports a homogenized nonlinear constitutive model based on the rotational symmetry axes, incorporating plasticity and fiber reorientation phenomena. The plasticity model contains a two-parameter flow potential and power function. Plastic deformations are computed using an explicit method. Fiber reorientation angles are computed both theoretically and numerically. The relationship between mechanical properties and fiber reorientation angles is studied using finite element method (FEM). Due to introduce of a novel approach to determining the strain and stress of 2D woven composites undergoing finite deformation, the proposed model should have potential in engineering predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有限变形条件下二维编织复合材料的均质结构模型:考虑纤维重新定向
二维(2D)编织复合材料沿纤维方向具有优异的机械性能。在特定应用中,其机械性能表现出非线性。虽然塑性方法可用于预测复杂的行为,但在有限变形过程中已观察到纤维的重新定向,这表明当纤维之间的角度发生变化时,纤维方向不再沿着正交材料轴。由于旋转对称性,即使在有限变形情况下,两个纤维方向的角平分线也可以作为正交材料轴。本研究报告了一种基于旋转对称轴的均质化非线性结构模型,其中包含塑性和纤维重新定向现象。塑性模型包含一个双参数流动势能和幂函数。塑性变形采用显式方法计算。纤维重新定向角是通过理论和数值计算得出的。使用有限元法(FEM)研究了机械性能与纤维重新定向角之间的关系。由于引入了一种新方法来确定发生有限变形的二维编织复合材料的应变和应力,所提出的模型在工程预测中应具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
期刊最新文献
Damage of composite thin-walled L profiles made in one production cycle Optimal design of electrical conductivity of hybrid multi-dimensional carbon fillers reinforced porous cement-based Composites: Experiment and modelling Repair technologies for structural polymeric composites: An automotive perspective Additive manufacturing of gradient porous Si/SiC ceramic parts: Quasi-static behaviors and mechanical properties An ultrasonic Lamb wave-based non-linear exponential RAPID method for delamination detection in composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1