{"title":"Analysis of tire characteristics driving on asphalt paved roads covered with volcanic ash","authors":"","doi":"10.1016/j.jterra.2024.101025","DOIUrl":null,"url":null,"abstract":"<div><div>Japan has many active volcanoes, and a large eruption can cause ash fall over a wide area. The accumulation of volcanic ash on paved roads affects the driving of vehicles. Therefore, we collected data by driving over volcanic ash accumulated on paved surface with a vehicle equipped with devices that can measure the force applied to the running tires. Vehicle driving tests were conducted at constant speed, rapid acceleration, and rapid deceleration. Data were collected on flat straight roads as well as on roads with grades and curves. In addition to longitudinal, lateral, and vertical tire forces, camber angle, rotation speed, and ground speed were measured. This paper discusses the effects of volcanic ash covering paved roads on driving by processing the tire data obtained. The relationship between the sideslip angle and side force can be obtained by processing turning driving data, and these effects were modeled using a neural network and Gaussian process that can consider multiple variables such as tire sideslip angle, camber angle, and vertical force.</div></div>","PeriodicalId":50023,"journal":{"name":"Journal of Terramechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Terramechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022489824000673","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Japan has many active volcanoes, and a large eruption can cause ash fall over a wide area. The accumulation of volcanic ash on paved roads affects the driving of vehicles. Therefore, we collected data by driving over volcanic ash accumulated on paved surface with a vehicle equipped with devices that can measure the force applied to the running tires. Vehicle driving tests were conducted at constant speed, rapid acceleration, and rapid deceleration. Data were collected on flat straight roads as well as on roads with grades and curves. In addition to longitudinal, lateral, and vertical tire forces, camber angle, rotation speed, and ground speed were measured. This paper discusses the effects of volcanic ash covering paved roads on driving by processing the tire data obtained. The relationship between the sideslip angle and side force can be obtained by processing turning driving data, and these effects were modeled using a neural network and Gaussian process that can consider multiple variables such as tire sideslip angle, camber angle, and vertical force.
期刊介绍:
The Journal of Terramechanics is primarily devoted to scientific articles concerned with research, design, and equipment utilization in the field of terramechanics.
The Journal of Terramechanics is the leading international journal serving the multidisciplinary global off-road vehicle and soil working machinery industries, and related user community, governmental agencies and universities.
The Journal of Terramechanics provides a forum for those involved in research, development, design, innovation, testing, application and utilization of off-road vehicles and soil working machinery, and their sub-systems and components. The Journal presents a cross-section of technical papers, reviews, comments and discussions, and serves as a medium for recording recent progress in the field.