Cui Wu , Fuyi Sun , Yaojie Zhang , Cheng Xie, Xunke Zhao, Yuanyuan Che
{"title":"Numerical simulation of fluid flow characteristics and ultrasonic cavitation performance in novel-designed stirred tank sonoreactor","authors":"Cui Wu , Fuyi Sun , Yaojie Zhang , Cheng Xie, Xunke Zhao, Yuanyuan Che","doi":"10.1016/j.cep.2024.110026","DOIUrl":null,"url":null,"abstract":"<div><div>A novel-designed stirred tank sonoreactor was developed to well solve large-scale dispersion of nanoparticles in liquid phase system. The fluid flow characteristics and ultrasonic cavitation performance in the sonoreactor were numerically simulated by CFD method. By comparing the pressure, cavitation bubble and velocity distribution under different situations, it is found that larger ultrasonic amplitude, relatively smaller ultrasonic frequency, higher saturated vapor pressure and lower viscosity of liquid medium are beneficial to ultrasonic cavitation. Besides, the acoustic flow action is strengthened with the increase of ultrasonic frequency and decrease of gas-liquid mixture's average density. For the designed sonoreactor, it is critical that high-frequency transducers should be determined near the bottom and upper region of the kettle, and large-amplitude transducers can be confirmed in the middle position. The research findings will provide theoretical and technical supports for developing state-of-the-art sonoreactors and optimizing ultrasonic process parameters in the industrialized preparation of nanocomposites.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270124003647","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel-designed stirred tank sonoreactor was developed to well solve large-scale dispersion of nanoparticles in liquid phase system. The fluid flow characteristics and ultrasonic cavitation performance in the sonoreactor were numerically simulated by CFD method. By comparing the pressure, cavitation bubble and velocity distribution under different situations, it is found that larger ultrasonic amplitude, relatively smaller ultrasonic frequency, higher saturated vapor pressure and lower viscosity of liquid medium are beneficial to ultrasonic cavitation. Besides, the acoustic flow action is strengthened with the increase of ultrasonic frequency and decrease of gas-liquid mixture's average density. For the designed sonoreactor, it is critical that high-frequency transducers should be determined near the bottom and upper region of the kettle, and large-amplitude transducers can be confirmed in the middle position. The research findings will provide theoretical and technical supports for developing state-of-the-art sonoreactors and optimizing ultrasonic process parameters in the industrialized preparation of nanocomposites.
期刊介绍:
Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.