{"title":"Effect of Ion Specificity on Thermodynamic Inhibition of CH4 and CO2 Hydrates: An Experimental and Modeling Study","authors":"Ying Zhou , Zhuo Chen , Nobuo Maeda , Huazhou Li","doi":"10.1016/j.fluid.2024.114256","DOIUrl":null,"url":null,"abstract":"<div><div>The effects of iodide salts and ion specificity on the thermodynamic inhibition of CH<sub>4</sub> and CO<sub>2</sub> hydrates have not been thoroughly investigated. In this study, we employ the isochoric pressure-search method to measure the dissociation temperature (272.48 – 286.54 K) and pressure (1.38 – 11.24 MPa) of CH<sub>4</sub> and CO<sub>2</sub> hydrates in iodide solutions with concentrations of 6.24 wt% and 12.48 wt%. The measured data are subsequently used to validate a thermodynamic model integrating the Pitzer model into the van der Waals-Platteeuw (vdW-P) model for predicting the dissociation pressure of gas hydrates. The model can accurately predict the dissociation conditions of CH<sub>4</sub> and CO<sub>2</sub> hydrates in iodide solutions. The experimental results reveal that the inhibition effect of iodide salts on CH<sub>4</sub> and CO<sub>2</sub> hydrates is enhanced with an increasing salt concentration. Additionally, the dissociation temperature suppression of CH<sub>4</sub> and CO<sub>2</sub> hydrates is correlated with water activities of different salt solutions to investigate the effect of ion specificity on the thermodynamic inhibition of these hydrates. Our analysis demonstrates that ion specificity exists in the thermodynamic inhibition of CO<sub>2</sub> hydrate but does not apply to CH<sub>4</sub> hydrate. In addition, anions play a major role in the thermodynamic inhibition of CO<sub>2</sub> hydrate.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114256"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002310","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of iodide salts and ion specificity on the thermodynamic inhibition of CH4 and CO2 hydrates have not been thoroughly investigated. In this study, we employ the isochoric pressure-search method to measure the dissociation temperature (272.48 – 286.54 K) and pressure (1.38 – 11.24 MPa) of CH4 and CO2 hydrates in iodide solutions with concentrations of 6.24 wt% and 12.48 wt%. The measured data are subsequently used to validate a thermodynamic model integrating the Pitzer model into the van der Waals-Platteeuw (vdW-P) model for predicting the dissociation pressure of gas hydrates. The model can accurately predict the dissociation conditions of CH4 and CO2 hydrates in iodide solutions. The experimental results reveal that the inhibition effect of iodide salts on CH4 and CO2 hydrates is enhanced with an increasing salt concentration. Additionally, the dissociation temperature suppression of CH4 and CO2 hydrates is correlated with water activities of different salt solutions to investigate the effect of ion specificity on the thermodynamic inhibition of these hydrates. Our analysis demonstrates that ion specificity exists in the thermodynamic inhibition of CO2 hydrate but does not apply to CH4 hydrate. In addition, anions play a major role in the thermodynamic inhibition of CO2 hydrate.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.