Xinlin Yang , Yun Shen , Bijun Fang , Shuai Zhang , Xiaolong Lu , Jianning Ding
{"title":"Low-temperature sintering BCZT-Dy ceramics with low strain hysteresis for actuator application","authors":"Xinlin Yang , Yun Shen , Bijun Fang , Shuai Zhang , Xiaolong Lu , Jianning Ding","doi":"10.1016/j.matlet.2024.137584","DOIUrl":null,"url":null,"abstract":"<div><div>Ba(Cu<sub>0.5</sub>W<sub>0.5</sub>)O<sub>3</sub> (BCuW)-doped [(Ba<sub>0.85</sub>Ca<sub>0.15</sub>)<sub>1-x</sub>Dy<sub>x</sub>](Zr<sub>0.1</sub>Ti<sub>0.9</sub>)O<sub>3</sub> (BCZT-xDy, x = 0.001, 0.03) ceramics were prepared by conventional ceramic processing via low-temperature sintering technique. Rather pure perovskite structure and densified morphology with irregular nearly spherical-shape grains are achieved in all ceramics due to liquid-phase sintering. All BCuW-doped BCZT-xDy ceramics present apparent dielectric frequency dispersion and relaxor ferroelectric characteristic due to ion substitution and adding BCuW. The ceramics prepared at optimized sintering temperatures have rather large strain and small strain hysteresis, showing prospect application in piezoelectric high-precision actuators.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"378 ","pages":"Article 137584"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X24017245","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ba(Cu0.5W0.5)O3 (BCuW)-doped [(Ba0.85Ca0.15)1-xDyx](Zr0.1Ti0.9)O3 (BCZT-xDy, x = 0.001, 0.03) ceramics were prepared by conventional ceramic processing via low-temperature sintering technique. Rather pure perovskite structure and densified morphology with irregular nearly spherical-shape grains are achieved in all ceramics due to liquid-phase sintering. All BCuW-doped BCZT-xDy ceramics present apparent dielectric frequency dispersion and relaxor ferroelectric characteristic due to ion substitution and adding BCuW. The ceramics prepared at optimized sintering temperatures have rather large strain and small strain hysteresis, showing prospect application in piezoelectric high-precision actuators.
期刊介绍:
Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials.
Contributions include, but are not limited to, a variety of topics such as:
• Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors
• Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart
• Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction
• Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots.
• Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing.
• Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic
• Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive