Yuanping Huang , Keke Liao , Zengling Yang , Sicong Tian , Xiangru Yuan , Xingming Sun , Zichao Li , Lujia Han
{"title":"Novel CRM cosine similarity mapping strategy for simultaneous in-situ visual profiling lignocellulose in plant cell walls","authors":"Yuanping Huang , Keke Liao , Zengling Yang , Sicong Tian , Xiangru Yuan , Xingming Sun , Zichao Li , Lujia Han","doi":"10.1016/j.carbpol.2024.122904","DOIUrl":null,"url":null,"abstract":"<div><div>Confocal Raman microscopy (CRM) is a promising <em>in-situ</em> visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultaneous <em>in-situ</em> visual profiling of lignin, cellulose, and hemicellulose in plant cell walls. The main stages of this strategy include: 1) a modified Otsu algorithm for extracting the regions of interest (ROI); 2) a modified subtraction method for cleaning the background signals in the ROI spectra; 3) a lignin signal subtraction method based on the pixel correction factor for eliminating the interference of strong lignin signals with weak cellulose and hemicellulose signals in the Raman full spectra of the cell walls; 4) second-order derivative spectral preprocessing for enhancing the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) a CS mapping algorithm for simultaneous <em>in-situ</em> profiling of lignin, cellulose, and hemicellulose in plant cell walls. The effectiveness of the strategy is verified by characterizing the <em>Brittle Culm1</em> (<em>BC1</em>) gene-mutant rice stem (IL349-BC1-KO) with known bioinformatics. This approach provides methodological support for <em>in-situ</em> visualization and analysis in fields such as plant or crop science at the micro-nano scale.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122904"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724011305","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Confocal Raman microscopy (CRM) is a promising in-situ visual technique that provides detailed insights into multiple lignocellulosic components and structures in plant cell walls at the micro-nano scale. In this study, we propose a novel CRM cosine similarity (CS) mapping strategy for the simultaneous in-situ visual profiling of lignin, cellulose, and hemicellulose in plant cell walls. The main stages of this strategy include: 1) a modified Otsu algorithm for extracting the regions of interest (ROI); 2) a modified subtraction method for cleaning the background signals in the ROI spectra; 3) a lignin signal subtraction method based on the pixel correction factor for eliminating the interference of strong lignin signals with weak cellulose and hemicellulose signals in the Raman full spectra of the cell walls; 4) second-order derivative spectral preprocessing for enhancing the discrimination between the characteristic peaks of cellulose and hemicellulose; 5) a CS mapping algorithm for simultaneous in-situ profiling of lignin, cellulose, and hemicellulose in plant cell walls. The effectiveness of the strategy is verified by characterizing the Brittle Culm1 (BC1) gene-mutant rice stem (IL349-BC1-KO) with known bioinformatics. This approach provides methodological support for in-situ visualization and analysis in fields such as plant or crop science at the micro-nano scale.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.