Meirong Zeng , Jigang Gao , Yuwen Deng , Peiqi Liu , Zhongyue Zhou , Jiuzhong Yang , Wenhao Yuan , Fei Qi
{"title":"Revealing the oxidation kinetics of n-dodecane, ethylcyclohexane and n-butylbenzene blended fuels","authors":"Meirong Zeng , Jigang Gao , Yuwen Deng , Peiqi Liu , Zhongyue Zhou , Jiuzhong Yang , Wenhao Yuan , Fei Qi","doi":"10.1016/j.combustflame.2024.113806","DOIUrl":null,"url":null,"abstract":"<div><div>The oxidation chemistry of single component has been widely explored, which motivates us to investigate the oxidation chemistry of blended fuels. Here, <em>n</em>-dodecane, ethylcyclohexane and <em>n</em>-butylbenzene have been selected as fuel components for representing <em>n</em>-alkane, cyclic alkane and aromatic, respectively. The oxidation experiments of blended <em>n</em>-dodecane, ethylcyclohexane and <em>n</em>-butylbenzene fuels were performed in an atmospheric jet stirred reactor, temperatures ranging from 450 to 850 K, equivalence ratios of 0.5 and 1.0. The synchrotron vacuum ultraviolet radiation photoionization mass spectrometry was applied to measure the featured intermediates, such as hydroperoxides and highly oxygenated molecules (HOMs) with characteristic functional groups. Subsequently, a kinetic model for the blended fuels was developed and validated, which was used to reveal the crucial coupled oxidation chemistry that drives the global oxidation reactivity and products distribution. It is revealed that the active chain initiators, such as OH radicals, produced by the oxidation reactions of <em>n</em>-dodecane and ethylcyclohexane, significantly enhance the oxidation reactivity of <em>n</em>-butylbenzene. Furthermore, the hydroperoxides and ketohydroperoxides, acting as key experimental evidence for the existence of first O<sub>2</sub> addition and second O<sub>2</sub> addition, contribute to the formation of active chain initiators, such as OH radicals. This work extends the existing conceptual reaction schemes proposed for the oxidation of single fuel towards the coupled oxidation chemistry of blended fuels. This, in turn, improves our understanding towards the complicated oxidation chemistry of real fuels.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"271 ","pages":"Article 113806"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024005157","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The oxidation chemistry of single component has been widely explored, which motivates us to investigate the oxidation chemistry of blended fuels. Here, n-dodecane, ethylcyclohexane and n-butylbenzene have been selected as fuel components for representing n-alkane, cyclic alkane and aromatic, respectively. The oxidation experiments of blended n-dodecane, ethylcyclohexane and n-butylbenzene fuels were performed in an atmospheric jet stirred reactor, temperatures ranging from 450 to 850 K, equivalence ratios of 0.5 and 1.0. The synchrotron vacuum ultraviolet radiation photoionization mass spectrometry was applied to measure the featured intermediates, such as hydroperoxides and highly oxygenated molecules (HOMs) with characteristic functional groups. Subsequently, a kinetic model for the blended fuels was developed and validated, which was used to reveal the crucial coupled oxidation chemistry that drives the global oxidation reactivity and products distribution. It is revealed that the active chain initiators, such as OH radicals, produced by the oxidation reactions of n-dodecane and ethylcyclohexane, significantly enhance the oxidation reactivity of n-butylbenzene. Furthermore, the hydroperoxides and ketohydroperoxides, acting as key experimental evidence for the existence of first O2 addition and second O2 addition, contribute to the formation of active chain initiators, such as OH radicals. This work extends the existing conceptual reaction schemes proposed for the oxidation of single fuel towards the coupled oxidation chemistry of blended fuels. This, in turn, improves our understanding towards the complicated oxidation chemistry of real fuels.
期刊介绍:
The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on:
Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including:
Conventional, alternative and surrogate fuels;
Pollutants;
Particulate and aerosol formation and abatement;
Heterogeneous processes.
Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including:
Premixed and non-premixed flames;
Ignition and extinction phenomena;
Flame propagation;
Flame structure;
Instabilities and swirl;
Flame spread;
Multi-phase reactants.
Advances in diagnostic and computational methods in combustion, including:
Measurement and simulation of scalar and vector properties;
Novel techniques;
State-of-the art applications.
Fundamental investigations of combustion technologies and systems, including:
Internal combustion engines;
Gas turbines;
Small- and large-scale stationary combustion and power generation;
Catalytic combustion;
Combustion synthesis;
Combustion under extreme conditions;
New concepts.