Qing-Yi Xiao , Xi-Yue Li , Dong-Liang Zhong , Jin Yan
{"title":"A calorimetric and Raman spectroscopy study on the phase behavior of DIOX + CO2 hydrate","authors":"Qing-Yi Xiao , Xi-Yue Li , Dong-Liang Zhong , Jin Yan","doi":"10.1016/j.fluid.2024.114253","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a calorimetric and Raman spectroscopy investigation on the phase behavior of DIOX (1,3-Dioxolane) + CO<sub>2</sub> hydrate. A high-pressure micro-differential scanning calorimeter (HP μ-DSC) was used to determine the phase equilibrium data of DIOX + CO<sub>2</sub> hydrate formed at 1 mol% and 5.56 mol% DIOX. A high-pressure in situ Raman spectroscopy apparatus was used to record the transient CO<sub>2</sub> Raman spectra. The spectra were employed to study CO<sub>2</sub> incorporation into the hydrate cages during the DIOX hydrate formation process. The results indicate that the DIOX + CO<sub>2</sub> hydrate formed at 5.56 mol% DIOX is more stable than that formed at 1 mol% DIOX. The amount of DIOX + CO<sub>2</sub> hydrate is increased when increasing the pressure from 3.0 MPa to 4.8 MPa, and more CO<sub>2</sub> molecules are captured in the hydrate. Through the in situ Raman spectroscopy experiments, it is found that DIOX hydrate formed quickly at the beginning of the experiment and CO<sub>2</sub> molecules were trapped in the small cages more slowly than the incorporation of DIOX into the hydrate. The results reported in this work have confirmed the feasibility of using DIOX as a thermodynamic additive to promote the hydrate-based CO<sub>2</sub> capture.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114253"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002280","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a calorimetric and Raman spectroscopy investigation on the phase behavior of DIOX (1,3-Dioxolane) + CO2 hydrate. A high-pressure micro-differential scanning calorimeter (HP μ-DSC) was used to determine the phase equilibrium data of DIOX + CO2 hydrate formed at 1 mol% and 5.56 mol% DIOX. A high-pressure in situ Raman spectroscopy apparatus was used to record the transient CO2 Raman spectra. The spectra were employed to study CO2 incorporation into the hydrate cages during the DIOX hydrate formation process. The results indicate that the DIOX + CO2 hydrate formed at 5.56 mol% DIOX is more stable than that formed at 1 mol% DIOX. The amount of DIOX + CO2 hydrate is increased when increasing the pressure from 3.0 MPa to 4.8 MPa, and more CO2 molecules are captured in the hydrate. Through the in situ Raman spectroscopy experiments, it is found that DIOX hydrate formed quickly at the beginning of the experiment and CO2 molecules were trapped in the small cages more slowly than the incorporation of DIOX into the hydrate. The results reported in this work have confirmed the feasibility of using DIOX as a thermodynamic additive to promote the hydrate-based CO2 capture.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.